
UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA

CAIO GARCIA CANCIAN

FELIPE CORRÊA MEYER MORÁN

Structure from Montion a partir de uma sequência de v́ıdeo

São Paulo

2020

CAIO GARCIA CANCIAN

FELIPE CORRÊA MEYER MORÁN

Structure from Montion a partir de uma sequência de v́ıdeo

Versão original

Monografia apresentada ao Departa-
mento de Engenharia Mecatrônica e Sistemas
Mecânicos da Escola Politécnica da Universi-
dade de São Paulo para obtenção do t́ıtulo
de Engenheiro.

Área de concentração:
Engenharia Mecatrônica

Orientador:
Prof. Dr. Jun Okamoto Junior

São Paulo

2020

 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Catalogação-na-publicação

 Structure from motion a partir de uma sequência de vídeo / C.
G. Cancian, F. Moran -- São Paulo, 2020. 78 p.

 Trabalho de Formatura - Escola Politécnica da Universidade de São
Paulo. Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos.

1.Structure from Motion 2.Reconstrução 3.Processamento de vídeos
I.Universidade de São Paulo. Escola Politécnica. Departamento de
Engenharia Mecatrônica e de Sistemas Mecânicos

Este relatório é apresentado como requisito parcial para obtenção do grau de engenheiro

mecatrônico na Escola Politécnica da Universidade de São Paulo. É o produto do meu

próprio trabalho, exceto onde indicado no texto. O relatório pode ser livremente copiado e

distribúıdo desde que a fonte seja citada.

Caio Garcia Cancian

Felipe Corrêa Meyer Morán

Agradecimentos

Gostaŕıamos de agradecer primeiramente aos nossos pais por todas as oportunidades

que nos forneceram e o apoio incondicional ao longo das nossas trajetórias. Agradecemos

também a todos os amigos, familiares, professores e demais pessoas que nos acompanharam

e contribúıram para o nosso percurso até esse importante momento. E também, ao nosso

orientador, Prof. Dr. Jun Okamoto Junior, muito obrigado pelo apoio, incentivo e confiança

durante todo o desenvolvimento do projeto.

Por último, gostaŕıamos de agradecer a Enstartiflette por organizar a viagem de

ski em fevereiro de 2018 que, num momento de grande alegria, nos permitiu ter a ideia de

fazermos esse trabalho juntos.

Resumo

O presente trabalho visa abordar o problema de visão computacional conhecido como

Structure from Motion em que, essencialmente, busca-se reconstruir, a partir de imagens

de uma cena estática adquiridas em posições distintas, tanto o modelo tridimensional

dessa cena, quanto a trajetória da câmera responsável por registrar as imagens. Além

disso, no caso espećıfico desse trabalho, as imagens adquiridas são provenientes de uma

sequência de v́ıdeo registrada continuamente, o que introduz particularidades em seu

tratamento. Esse tipo de problema possui interesse em diferentes áreas do conhecimento,

sendo parte constituinte de aplicações cujo escopo vão de imagens médicas a realidade

virtual e aumentada. Dada a vasta literatura e diferentes abordagens posśıveis para o tema,

a primeira etapa do projeto consistiu em um estudo teórico dos diferentes algoritmos que

tipicamente constituem um pipeline de Structure from Motion. Em seguida, a partindo-se

dos algoritmos melhor adaptados às particularidades do processamento de um v́ıdeo, a

segunda etapa do projeto consistiu na proposição de pipeline próprio. Por último, a terceira

e última etapa do projeto foi a validação do pipeline proposto utilizando-se tanto dados

sintéticos quanto v́ıdeos reais em diferentes situações, de modo a se determinar os pontos

fortes e as eventuais limitações da proposta. Dessa forma, esse texto discorre tanto sobre

os aspectos teóricos de cada algoritmo utilizado, como também sobre aspectos práticos de

implementação e que foram levados em conta em cada uma dessas etapas da elaboração

da solução para o problema proposto.

Palavras-chaves: Structure from motion. Reconstrução 3D. Processamento de v́ıdeos.

Abstract

The present work aims to address the computer vision problem known as Structure from

Motion in which, essentially, it is necessary to reconstruct, from images of a static scene

acquired in different positions, both the three-dimensional model of this scene, as well

as the trajectory of the camera responsible for registering the images. In addition, in

the specific case of this work, the acquired images come from a continuously recorded

video sequence, which introduces particularities in their treatment. This type of problem

has an interest in different areas of knowledge, being a constituent part of applications

whose scope ranges from medical images to virtual and augmented reality. Given the vast

literature and different possible approaches to the theme, the first stage of the project

consisted of a theoretical study of the different algorithms that are typically used in a

Structure from Motion pipeline. Then, based on the algorithms that are best adapted to

the video processing difficulties, the second stage of the project consisted of the proposition

of a new pipeline. Finally, the third and final stage of the project was the validation of the

proposed pipeline using both synthetic data and real videos acquired in different situations,

in order to determine the strengths and possible limitations of the proposed method. Thus,

this text discusses both the theoretical aspects of each algorithm used, as well as practical

aspects of implementation, which were taken into account in each of these steps followed

when solving the proposed problem.

Key-words: Structure from motion. 3D Reconstruction. Video processing.

Lista de figuras

Figura 1.1 – Exemplo de reconstrução 3D e estimativa do movimento da câmera a

partir de imagens 2D, retirado de (BIANCO; CIOCCA; MARELLI, 2018). 11

Figura 1.2 – Pipeline básico de SfM. 12

Figura 1.3 – Exemplo de correspondência entre pontos de duas imagens, retirado de

(SNAVELY; SEITZ; SZELISKI, 2008). 13

Figura 1.4 – Resultado de um pipeline de SfM, retirado de (SNAVELY; SEITZ;

SZELISKI, 2008). 15

Figura 3.1 – Diagrama do pipeline de SfM a partir de um v́ıdeo 27

Figura 5.1 – Paraleleṕıpedo e trajetória da câmera gerados para validação do pipeline 53

Figura 5.2 – Comparação dos resultados do pipeline: sem Bundle Adjustment à

esquerda (a) e com à direita (b). Como esperado, as reconstruções

obtidas são idênticas entre si e com os dados originais. 53

Figura 5.3 – Comparação dos resultados do pipeline quando rúido é adicionado: sem

Bundle Adjustment à esquerda (a) e com à direita (b). O BA é capaz

de recuperar o resultado original. 54

Figura 5.4 – Erros, ao longo dos frames, nas posições dos pontos, na translação e

orientação da câmera e na reprojeção para os dados com e sem rúido e

pipelines com e sem BA. A otimização aproxima a solução do resultado

original. 55

Figura 5.5 – Diferentes versões do pipeline: (a) sem BA algum, (b) BA apenas no

final, (c) BA com janela deslizante, (d) BA com janela deslizante e no

final. 57

Figura 5.6 – Comparação das performances com as diferentes configurações do BA. 57

Figura 5.7 – Resultado da otimização ao longo do pipeline para os frames iniciais:

visão frontal à esquerda (a) e superior à direita (b). Os pontos da

perspectiva das câmeras estão coerentes, mas a estrutura global do

paraleleṕıpedo fica deformada. 58

Figura 5.8 – Comparação das performances com as diferentes configurações do BA,

10 frames utilizados na inicialização. 60

Figura 5.9 – Comparação do número de frames descartados na inicialização. O BA

com janela deslizante permite um ińıcio mais rápido. 60

Figura 5.10–Sequência de frames do v́ıdeo de uma caixa de macarrão e a evolução

das features acompanhadas pelo KLT. 62

Figura 5.11–Resultado da reconstrução para a sequência de v́ıdeo da caixa de macarrão. 63

Figura 5.12–Erro de reprojeção obtido com a sequência de v́ıdeo da caixa de macarrão 64

Figura 5.13–Resultado da reconstrução da caixa de macarrão no caso de uma

aquisição ruidosa. 64

Figura 5.14–Erro de reprojeção no caso de uma aquisição ruidosa: há um aumento

significativo em relação a versão mais simples do v́ıdeo. 65

Figura 5.15–Sequência de frames do v́ıdeo da estátua de um elefante: as features

detectadas se concentram, sobretudo, na região com bastante textura. . 66

Figura 5.16–Resultado da reconstrução do pipeline para a estátua de um elefante. . 67

Figura 5.17–Erro de reprojeção do v́ıdeo da estátua de um elefante. 67

Sumário

1 Introdução . 11

2 Estado da arte . 16

2.1 Feature Extraction, Matching e Tracking 16

2.2 Estimativa do movimento da câmera 19

2.3 Reconstrução 3D . 20

2.4 SfM a partir de v́ıdeo . 21

3 Pipeline proposto . 24

3.1 Visão geral . 24

3.2 Algoritmo KLT e feature tracking . 27

3.2.1 Descrição teórica . 27

3.2.2 Implementação piramidal . 30

3.2.3 Gerenciamento das features . 31

3.2.4 Etapa de feature tracking resultante 33

3.3 Structure from Motion incremental 34

3.3.1 Inicialização . 34

3.3.2 Refinamento da inicialização e incorporação de novos frames 38

3.3.3 Bundle Adjustment . 41

3.3.4 Etapa de reconstrução incremental resultante 43

3.4 Processamento dos dados . 44

3.4.1 Calibração da câmera . 45

3.4.2 Visualização . 46

4 Implementação . 47

4.1 Execução . 47

4.2 Estrutura do código . 47

4.3 Bibliotecas utilizadas . 49

4.4 Práticas de desenvolvimento . 50

5 Resultados . 52

5.1 Validação do pipeline . 52

5.2 Análise do efeito da otimização e inicialização 56

5.3 Vı́deos reais . 62

5.3.1 Vı́deo 1: caixa de macarrão . 62

5.3.2 Vı́deo 2: estátua de um elefante . 65

5.4 Limitações . 68

6 Conclusão . 70

Referências . 72

11

1 Introdução

Structure from Motion representa uma classe de problemas em que se deseja

recuperar as informações da estrutura geométrica tridimensional de uma cena estática, a

partir de um conjunto de imagens bidimensionais, utilizando essencialmente informações

sobre a estimativa do movimento da câmera entre as imagens, como representado no

esquema da figura (1.1).

Figura 1.1 – Exemplo de reconstrução 3D e estimativa do movimento da câmera a partir
de imagens 2D, retirado de (BIANCO; CIOCCA; MARELLI, 2018).

Esse tipo de problema tem historicamente despertado interesse em trabalhos de

visão computacional, uma vez que possui diversas aplicações: preservação e digitalização de

patrimônio cultural (REMONDINO, 2011; RONCELLA; RE; FORLANI, 2011), como a

criação de modelos 3D de construções históricas e peças de museus; geociências e topografia

(MANCINI et al., 2013; JAVERNICK; BRASINGTON; CARUSO, 2014), com a criação

de modelos digitais detalhados de relevos; realidade virtual e aumentada (QUAN; WU,

2013; KROEGER; GOOL, 2014); e aplicações médicas (CARLBOM; TERZOPOULOS;

HARRIS, 1994; LEONARD et al., 2016), através da reconstrução de volumes 3D de tecidos

e órgãos humanos, utilizados durante o diagnóstico ou em intervenções cirúrgicas.

Essencialmente, o problema de SfM é resolvido através de um pipeline básico

de, pelo menos, 3 etapas: extração de caracteŕısticas importantes das imagens (feature

extraction), especialmente pontos, linhas e outras estruturas geométricas, assim como a

realização da correspondência dessas caracteŕısticas entre as diferentes imagens (feature

matching); estimativa do movimento da câmera, a partir da evolução das caracteŕısticas

escolhidas entre as imagens; e, finalmente, a reconstrução da estrutura 3D da cena, usando

as informações das etapas anteriores, como resumido no diagrama da figura (1.2).

12

Figura 1.2 – Pipeline básico de SfM.

De maneira mais formal, seguindo o que é feito por exemplo em (HARTLEY;

ZISSERMAN, 2003), o problema de Structure from Motion pode ser definido da seguinte

forma: dado um conjunto de k pontos bidimensionais u1,u2, ...,uk projetados em m

imagens, o objetivo é encontrar as m matrizes de projeção P1, ...,Pm, bem como os n

pontos tridimensionais originais X1, ...,Xn que compõem a estrutura da cena.

Usando a notação de coordenadas homogêneas 1 é posśıvel relacionar um ponto 3D

X̃ ∼ [X Y Z 1]> com seu pixel correspondente projetado ũ = [x y 1]> através da

matriz de projeção P:

ũ ∼ PX̃ (1)

em que a matriz de projeção P ∈ R3×4, usando o modelo de câmera pinhole, é definida

pela igualdade a menos de escala P ∼ K[R | t], em que K é a chamada matriz de

parâmetros intŕınsecos da câmera ou matriz de calibração, uma vez que está relacionada

com parâmetros como distância focal e distorção introduzida pela câmera; R ∈ R3×3 é

a matriz de rotação, que representa a orientação da câmera, e t ∈ R3×1 é o vetor de

translação, que representa a posição da câmera. As matrizes de rotação e translação

juntas formam os chamados parâmetros extŕınsecos e descrevem o posicionamento da

câmera no espaço tridimensional. Para uma explicação mais detalhada, é posśıvel consultar

(HARTLEY; ZISSERMAN, 2003).

Como mencionado anteriormente, o problema de SfM é resolvido, então, em 3

etapas essenciais. A primeira delas é extração de caracteŕısticas das imagens e a realização

da correspondência dessas caracteŕısticas entre duas imagens distintas, como mostrado na

figura (1.3). Isso porque, como será explicitado posteriormente, através de um conjunto de

imagens obtidas em posições diferentes, com projeções de um mesmo ponto do espaço, é

posśıvel recuperar não só as matrizes de rotação e translação que levam a câmera de uma

posição de aquisição à outra, mas também as coordenadas desse ponto.

1 Se x ∈ Rn, em coordenadas homogêneas x̃ ∈ Rn+1, sendo o último elemento um fator de escala. Assim,
se x̃ = [x̃1 x̃2 w]>, então x = [x̃1/w x̃2/w]> e a igualdade a menos do fator de escala w é escrita
x̃ ∼ [x1 x2 1]>

13

Figura 1.3 – Exemplo de correspondência entre pontos de duas imagens, retirado de
(SNAVELY; SEITZ; SZELISKI, 2008).

Existem inúmeros algoritmos na literatura que são capazes de detectar e realizar

correspondências entre pontos de diferentes imagens (KARAMI; PRASAD; SHEHATA,

2017). Um algoritmo que é comumente aplicado é o chamado Scale Invariant Feature

Transform (SIFT) (LOWE, 2004), responsável por encontrar caracteŕısticas locais que

são invariantes à escala e à rotações. Entretanto, mesmo possuindo boa performance, esse

algoritmo, assim como outros derivados, é computacionalmente exigente e seu uso pode se

tornar impeditivo em aplicações que devam funcionar em tempo real ou que precisem tratar

um volume grande de imagens, como é o caso de um conjunto de frames que constituem um

v́ıdeo. Por isso, é interessante considerar uma outra classe de algoritmos de correspondência

que possuem complexidade computacional mais baixa. Uma solução apresentada foram

algoritmos baseados em fluxo óptico, sendo o mais comum deles conhecido como Kanade-

Lucas-Tomasi feature tracker (KLT) (LUCAS; KANADE et al., 1981; TOMASI; KANADE,

1991).

Tendo sido realizada a correspondência entre pontos de imagens distintas, a segunda

etapa do pipeline consiste em recuperar as matrizes de projeção que, como mencionado,

possuem informações sobre a orientação (rotação) e posicionamento (translação) das

câmeras. Isso é feito através usando a chamada matriz essencial E que relaciona duas

câmeras C e C ′ de matrizes de projeção P e P′, respectivamente (LONGUET-HIGGINS,

1981).

De maneira resumida, um ponto x̃′ capturado por C ′ será descrito em C por

x̃ = Rx̃′ + t (2)

de modo que multiplicando a equação pela direita por x̃>[t]× obtem-se:

x̃>[t]×Rx̃′ = x̃>Ex̃′ = 0 (3)

14

em que E ∼ [t]×R é a matriz essencial, que introduz uma restrição algébrica, cuja

interpretação geométrica está relacionado com o fato de que as projeções de um mesmo

ponto devem estar na mesma linha epipolar.

Na prática, nós temos acesso às projeções modificadas pelos parâmetros intŕısecos

da câmera ũ ∼ Kx̃, de modo que a equação 3 normalmente é reescrita em termos da

matriz fundamental F ∼ (K−1)>EK′−1

ũ>Fũ′ = 0 (4)

sendo que F ∈ R3×3, com posto igual a 2. Dessa forma, dado um par de imagens e pelo

menos 8 pontos que se correspondem em cada uma das imagens, em teoria é posśıvel

estimar a matriz fundamental de maneira linear (LONGUET-HIGGINS, 1981). Estimada

F e conhecida as matrizes de calibragem K é posśıvel realizar as transformações inversas:

E ∼ K′>FK e E = [t]×R, de modo a se recuperar as matrizes de rotação R e translação

t e, portanto, as matrizes de projeção P ∼ K[R | t] e P′ ∼ K′[R | t]

Desde a solução ao problema acima, conhecida como algoritmo de 8 pontos e

introduzido em (LONGUET-HIGGINS, 1981), uma extensa literatura foi produzida para

obter melhores estimativas do movimento das câmeras através de melhoras na estimação da

matriz essencial. Inicialmente, isso foi feito melhorando-se o algoritmo de 8 pontos original,

como a versão normalizada apresentada em (HARTLEY, 1997), mas depois utilizando-se

cada vez menos pontos, até a versão otimizada com apenas 5 proposta em (NISTÉR,

2004).

Tendo as matrizes de projeção estimadas, a última etapa essencial para o pipeline é

a reconstrução da estrutura 3D da cena, o que é feito em um processo conhecido como

triangulação. Em teoria, tendo-se 2 vistas de um ponto X no espaço, ele deveria estar na

intersecção dos raios reprojetados a partir de u e u′, o que pode ser feito utilizando a matriz

pseudo-inversa de P e P′ respectivamente, como descrito em (HARTLEY; ZISSERMAN,

2003). Contudo, devido a presença de rúıdo nas imagens, de maneira geral esses raios

reprojetados não se interceptam, de modo que, em geral, os pontos 3D são recuperados

minimizando-se uma métrica apropriada, como por exemplo, o erro emṕırico de reprojeção

X? = arg min
X

∑
i

Li(ui, ûi(Pi,X)) (5)

em que ui é o pixel observado, ûi é o pixel estimado e a somatória é feita nas i imagens

que contem o ponto X. Assumindo que o rúıdo presente na imagem é Gaussiano e

15

branco, a escolha da métrica como sendo a norma L2 entre os pixels estimado e observado

Li = ||ui− ûi(Pi,X)||22 implica que X? é o estimador de máxima verossimilhança do ponto

real.

O resultado final dessas 3 etapas deve ser, portanto, uma nuvem de pontos no

espaço 3D, bem como as diferentes posições e orientações das câmeras que geraram as

imagens 2D, como representado na figura (1.4).

Figura 1.4 – Resultado de um pipeline de SfM, retirado de (SNAVELY; SEITZ; SZELISKI,
2008).

Esse trabalho de conclusão de curso se insere, dessa forma, nesse contexto. O

nosso objetivo é estabelecer um pipeline de SfM capaz de receber uma sequência de v́ıdeo

de uma cena estática e reconstruir uma nuvem de pontos 3D, bem como as estimar a

trajetória da câmera. Para tanto, serão implementadas as diferentes etapas apresentadas

anteriormente, levando-se em conta as particularidades impostas pelo tratamento sequencial

dos frames de um v́ıdeo. Nas seções que seguem, uma revisão bibliográfica com os principais

desenvolvimentos no tema será apresentada. Partindo-se dela, o pipeline desenvolvido será

detalhado e os resultados obtidos serão analisados e discutidos.

16

2 Estado da arte

Nessa seção os avanços mais recentes na resolução do problema de reconstrução da

estrutura 3D de uma cena estática a partir do movimento da câmera serão apresentados.

Para tanto, em primeiro lugar, as técnicas gerais mais recentes das diferentes etapas do

pipeline geral serão apresentadas e, em seguida, os principais avanços para a resolução do

problema quando restrito ao caso espećıfico em que as entradas representam frames de

um v́ıdeo.

É importante explicitar que, como em muitas outras tarefas de visão computaci-

onal, os trabalhos mais recentes na área utilizam técnicas de aprendizado de máquina

e, em especial, de aprendizagem profunda e redes neurais. Mesmo que essas abordagens

apresentem resultados promissores, elas fogem do escopo desse trabalho e, portanto, não

serão discutidas nessa seção.

2.1 Feature Extraction, Matching e Tracking

A extração automática de caracteristicas de interesse em uma cena (feature ex-

traction), bem como a realização da correspondência dessas caracteŕısticas entre imagens

distintas dessa cena, obtidas de diferentes pontos de vista (feature matching), são etapas

essenciais em várias áreas de visão computacional e, portanto, possuem uma vasta litera-

tura própria. Assim, apenas alguns dos principais métodos serão apresentados, enquanto

uma revisão extensiva pode ser encontrada em (TUYTELAARS; MIKOLAJCZYK et al.,

2008).

Um primeiro algoritmo de extração de caracteŕısticas que recebeu bastante atenção

é conhecido como Scale Invariant Feature Transform (SIFT), apresentado em (LOWE,

2004). De modo geral, esse algoritmo busca encontrar caracteŕısticas que são invariantes a

rotações e escala, além de parcialmente invariantes à diferença de luminosidade e mudança

de ponto de vista da aquisição. Para tanto, existem 4 passos fundamentais na criação

das caracteŕısticas SIFT: em primeiro lugar, posśıveis pontos de interesse são obtidos

encontrando-se extremos da representação no espaço de escala da imagem, usando diferença

de Gaussianas; em segundo lugar, a localização, a escala e o ratio das curvaturas principais

são calculados, de modo a eliminar candidatos com baixo contraste ou mal localizados;

17

o terceiro passo consiste em calcular gradientes locais para atribuir uma orientação aos

pontos candidatos; por último, uma descrição local de cada um desses pontos é calculada,

utilizando-se informações da magnitude e orientação do gradiente no entorno. Apesar de

ter sido aplicado com sucesso em diferentes aplicações de visão computacional, inclusive em

pipelines de SfM, o algoritmo para a extração de caracteŕısticas SIFT é computacionalmente

exigente, se tornando impraticável em aplicações em tempo real ou com grande volume de

dados, como v́ıdeos em que frames de alta resolução são amostrados em taxas relativamente

elevadas.

Para tentar solucionar esse problema de eficiência computacional, diferentes algo-

ritmos foram propostos, dos quais recebeu bastante atenção o conhecido como Speed Up

Robust Features (SURF), proposto em (BAY; TUYTELAARS; GOOL, 2006). Esse algo-

ritmo é inspirado nas ideias utilizadas nas caracteŕısticas SIFT, porém com modificações

para acelerar cada uma das diferentes etapas descritas anteriormente. Assim, a diferença

de Gaussianas é aproximada por filtros quadrados (box filters) calculados na imagem

integral (COOPER, 1989), que são mais rápidos e podem ser aplicados paralelamente em

diferentes escalas; além disso, a localização e escala dos pontos de interesse é baseada

no determinante da matriz Hessiana e, finalmente, tanto a orientação quanto o descritor

local são obtidos usando-se wavelets nas direções horizontal e vertical, que também são

calculadas de maneira eficiente com a imagem integral.

Uma outra alternativa proposta foi o algoritmo Features from Accelerated Segment

Test (FAST) (ROSTEN; DRUMMOND, 2006), que buscava obter um aumento de per-

formance em velocidade grande o suficiente para aplicações em tempo real ou com poder

computacional limitado. Diferente em natureza do SIFT e SURF, o algoritmo FAST possui

essencialmente 2 etapas: em primeiro lugar, posśıveis pontos de interesse são encontrados

aplicando-se um threshold a uma vizinhança de cada pixel da imagem e comparando a

intensidade luminosa desses pixels adjacentes; em seguida, aprendizado de máquina é

utilizado para aumentar a robustez dos pontos de interesse selecionados, através do uso de

uma árvore de decisão, seguido de um procedimento de eliminação de múltiplos pontos de

interesse adjacentes. Entretanto, apesar de ser sensivelmente mais rápido, esse algoritmo

não é tão robusto à presença de rúıdo e, além disso, sua performance depende da escolha

do valor do threshold.

18

Mais recentemente, o algoritmo Oriented FAST and Rotated BRIEF (ORB) foi

proposto em (RUBLEE et al., 2011), como uma tentativa de se combinar a robustez do

algoritmo SIFT, porém mantendo o ganho de velocidade do algoritmo FAST. Para tanto, os

autores em (RUBLEE et al., 2011) combinaram o detector de pontos de interesse do FAST,

modificado de modo que uma orientação é atribúıda a esses pontos, com uma nova versão

do descritor local chamado Binary Robust Independent Elementary Features (BRIEF),

apresentado originalmente em (CALONDER et al., 2010), para recuperar a invariância

à rotação que se observava nos algoritmos SIFT e SURF. Uma análise e comparação

aprofundadas da performance de alguns desses algoritmos podem ser encontradas em

(GAUGLITZ; HÖLLERER; TURK, 2011).

Esses algoritmos citados servem para que pontos de interesse sejam selecionados

em uma imagem de modo que, em seguida, seja posśıvel realizar a correspondência entre

os mesmos pontos em um par de imagens distintas, que em geral representam grandes

variações de posição e rotação da câmera, o que é chamado de wide-baseline matching.

Porém, no caso de frames de um v́ıdeo, em geral, vale a hipótese que a vizinhança dos

pontos de interesse não variam tanto e é posśıvel aplicar uma correspondência do tipo

narrow-baseline matching. Uma outra categoria de algoritmos desse tipo busca, então,

encontrar esses pontos de interesse e acompanhar sua evolução a cada frame utilizando o

que é conhecido como fluxo óptico, sendo o Kanade-Lucas-Tomasi (KLT) feature tracker

(LUCAS; KANADE et al., 1981; TOMASI; KANADE, 1991; SHI et al., 1994) o de maior

destaque entre eles.

Originalmente, Lucas e Kanade desenvolveram um algoritmo capaz de alinhar uma

imagem de tamplate com uma imagem de entrada, através de um método de descida

de gradiente responsável por encontrar o movimento entre uma imagem e outra que

minimiza o erro quadrático entre a imagem tamplate observada e a imagem estimada pelo

deslocamento, sendo posśıvel assim acompanhar a evolução dos pixels em cada imagem.

Como o cálculo do gradiente envolve a inversão da matriz Hessiana da imagem, é essencial

para a estabilidade do método que ela seja bem-condicionada.

19

Partindo dessa observação, Tomasi e Shi propuseram um método para selecionar

os pontos de interesse a serem acompanhados entre as imagens, levando em conta os

autovalores da matriz Hessiana: quando um, outro ou ambos são muito maiores do que zero,

isso significa que essa matriz é não singular e, portanto, inverśıvel. Mais especificamente,

o algoritmo seleciona pontos tais que os autovalores sejam maiores que um determinado

valor mı́nimo, associado ao rúıdo presente nas imagens. Dado sua robustez e velocidade,

o algoritmo KLT ganhou grande popularidade e segue apresentando performance de

estado-da-arte.

2.2 Estimativa do movimento da câmera

A estimativa da matriz de projeção de uma câmera partindo-se de duas imagens

distintas da mesma cena também recebeu grande atenção desde sua introdução (LONGUET-

HIGGINS, 1981), em que foi proposto o algoritmo de 8 pontos. Basicamente, a tarefa

consiste em se encontrar a matriz fundamental F que satisfaz equação (4) para quaisquer

par de pontos correspondentes em duas imagens. Como F possui 9 elementos e tem

posto igual a 2, basta utilizar 8 pontos não-coplanares para formular um sistema linear e

resolvê-lo, de modo a se determinar completamente a matriz.

Entretanto, esse problema só pode ser resolvido analiticamente no caso em que não

há qualquer tipo de rúıdo nas imagens ou erro de correspondência entre os pontos, o que

não se observa em imagens reais. Dessa forma, diferentes modificações foram propostas

para o algoritmo original. Em (HARTLEY, 1997), Hartley propôs uma versão normalizada

do algoritmo, que busca uma solução do tipo mı́nimos quadrados do sistema linear obtido,

levando-se em conta que o problema em geral é mal-condicionado: a matriz do sistema,

teoricamente, deveria possuir apenas um autovalor nulo e todos os outros diferentes de zero;

entretanto, devido à má-distribuição das coordenadas homogêneas dos pixels das imagens,

isso em geral não é verdade. Assim, propôs-se uma transformação de coordenadas para

normalizar as coordenadas dos pontos, de modo a melhorar o condicionamento numérico

da matriz do sistema, obtendo-se assim resultados mais robustos.

Além disso, uma análise teórica mais detalhada mostra que o problema pode ser

resolvido com menos do que 8 pontos. Usando diretamente o fato que a matriz do sistema

linear possui um autovalor nulo, um algoritmo usando 7 pontos foi proposto em (TORR;

MURRAY, 1997). Além do interesse teórico em explorar a estrutura matemática do

20

problema, o uso de menos pontos na estimação da matriz fundamental possui interesses

práticos. Em (NISTÉR, 2004), Ǹıster apresentou uma solução eficiente de estimação usando

apenas 5 pontos, utilizada em um pipeline de SfM em tempo real, obtendo performance

de estado da arte à época, com resultados mais velozes e robustos do que aqueles obtidos

com algoritmos de 8 e 7 pontos. Entretanto, esse algoritmo exige que as câmeras estejam

calibradas, de modo que todos os parâmetros intŕınsecos devem ser conhecidos, o que não é

o caso para os algoritmos que usam mais pontos. Uma alternativa foi, então, proposta em

(STEWÉNIUS et al., 2008), através de um algoritmo que utiliza 6 pontos, mas que relaxa

a condição sobre os parâmetros intŕınsecos, uma vez que a distância focal é considerada

desconhecida, de modo a encontrar um compromisso entre a robustez obtida com menos

pontos e a flexibilidade da aplicação.

2.3 Reconstrução 3D

A reconstrução da estrutura 3D da cena consiste em resolver o problema de

otimização apresentado pela equação (5). De maneira geral, quando mais de duas imagens

são utilizadas, é posśıvel identificar duas categorias gerais de métodos de empregados:

métodos sequenciais (ou incrementais) e métodos por batch.

Os métodos sequenciais são os mais comuns na literatura e, essencialmente, funcio-

nam através da incorporação de novas imagens uma a uma, de modo que reconstruções

parciais são feitas e aprimoradas a cada nova imagem adicionada. Diferentes estratégias

podem ser adotadas nesse processo sequencial. Por exemplo, (HARTLEY, 1992) utiliza

a informação 3D dos pontos já reconstrúıdos para estimar o movimento da câmera das

novas imagens e continuar a reconstrução do novos pontos. Outra possibilidade é calcular

duas reconstruções distintas, a partir de diferentes pares, e unir as soluções, através de

pontos 3D em comum, como é feito em (FITZGIBBON; ZISSERMAN, 1998), em que

sequências de imagens cada vez mais longas são reconstrúıdas de maneira hierárquica.

Entretanto, métodos sequenciais apresentam algumas limitações, como a necessidade de

grande superposição entre imagens, o uso de muitos pontos de interesse e a falta de

robustez a determinados tipos de cenas ou movimentos.

21

A segunda categoria de métodos de reconstrução é conhecida como reconstrução por

batch, uma vez que utiliza múltiplas imagens simultaneamente para realizar as estimativas

de movimento e estrutura 3D da cena, de modo a diminuir o erro de reconstrução.

Igualmente, existem diversas formas de realizar esse tipo de reconstrução: em (TOMASI;

KANADE, 1992) foi introduzido o chamado método por fatorização, mas com a limitação

de um modelo simplificado de câmera, que exclui movimentos mais gerais. Alguns trabalhos

tentaram corrigir essa limitação, como o método apresentado em (STURM; TRIGGS,

1996) que utiliza uma técnica de rebalanceamento das escalas dos pontos das imagens, de

modo a aumentar a robustez da reconstrução.

Finalmente, a grande maioria dos pipelines de SfM mais recentes utilizam uma

técnica de refinamento da solução encontrada (tanto movimento da câmera, quanto

estrutura 3D) chamada de Bundle Adjustment (BA). De modo geral, BA consiste em

minimizar uma função de perda que leva em conta o erro de reprojeção obtido. Dessa forma,

através do uso de algoritmos de otimização não-linear, como por exemplo variações do

algoritmo de Gauss-Newton, é posśıvel refinar a solução e encontrar matrizes de projeção

e pontos tridimensionais mais adequados. Existe uma extensa literatura com as diferentes

técnicas comumente empregadas para a realização desse refinamento e uma revisão bastante

extensa pode ser encontrada em (TRIGGS et al., 1999).

2.4 SfM a partir de v́ıdeo

Grande parte da literatura de SfM se concentra no caso em que as entradas são

imagens de uma cena obtidas de maneira discreta e espaçada. Assim, dado um conjunto

de imagens, cada par formado apresenta chances de possuir muitos pontos em comum, ou

absolutamente nenhum, de modo que, geralmente, é preciso checar todas as combinações.

Além disso, existe sempre a possibilidade de que, mesmo para um par onde efetivamente

há pontos em comum, ocorram potencialmente grandes diferenças fotométricas entre as

imagens, com oclusões, diferença de iluminação, entre outras caracteŕısticas.

Por outro lado, para o caso de frames de um v́ıdeo, existem algumas particularidades

que precisam ser levadas em conta: similaridade entre as imagens de entrada em frames

adjacentes, a existência de uma relação sequencial entre as entradas, a necessidade de

processar grandes volumes de dados rapidamente, o controle de acúmulo de erro, entre

22

outras caracteŕısticas. Assim, uma literatura própria se desenvolveu para tratar dessa

classe de problema.

Um dos primeiros trabalhos a receber destaque foi (TOMASI; KANADE, 1992),

em que foi introduzido o que os autores chamam de método por fatorização, isto é, em

que todas as imagens de um subconjunto (batch) são utilizadas ao mesmo tempo para

realizar as estimativas de movimento da câmera e estrutura 3D, de modo a reduzir o erro

de reconstrução, que é distribúıdo por todas as aquisições. Dessa forma, o método foi um

dos primeiros que se mostraram robusto à presença de rúıdo nos frames, de modo a obter

boa performance em sequências de imagens reais.

Outro trabalho de destaque é apresentado em (BEARDSLEY; TORR; ZISSERMAN,

1996), em que se buscava recuperar a estrutura 3D de uma cena através de uma longa

sequência de imagens obtidas com uma câmera cujos parâmetros são desconhecidos.

Para tanto, os autores propuseram um método sequencial, que reconstrói a estrutura 3D

iterativamente, usando uma trinca de frames como unidade básica, ao invés de pares, mas

com o mesmo prinćıpio de funcionamento: pontos de interesse são encontrados nas imagens

e a correspondência entre eles é realizada usando-se uma estratégia de correlação cruzada,

assumindo que as mudanças em uma vizinhança são essencialmente estáticas; o tensor focal

(no lugar da matriz fundamental) é estimado usando um algoritmo de 6 pontos, associado a

um esquema do tipo RANSAC. De maneira similar, (FITZGIBBON; ZISSERMAN, 1998)

usa trincas de imagens como ponto de partida para se obter estimativas do movimento da

câmera e representa um dos primeiros trabalhos que consideram diferentes tipos de cena:

interior e exterior, filmadas com um movimento controlado ou à mão livre.

Esses trabalhos iniciais buscam uma reconstrução 3D esparsa, porém trabalhos

mais recentes tentam obter performances em tempo real também para reconstrução

densa da cena. O método apresentado em (NEWCOMBE; DAVISON, 2010) utiliza um

pipeline de SfM em tempo real introduzido em (KLEIN; MURRAY, 2007), que combina o

acompanhamento de milhares de pontos de interesse por frame com a construção de um

mapa da cena, responsável por aumentar a precisão das estimativas de deslocamentos dos

pontos e de movimento da câmera, atingindo performance de estado da arte em cenas com

limitação de profundidade e pouca variação de caracteŕısticas. A partir dessas estimações

robustas, a reconstrução densa é obtida então através da criação de uma malha com

base na seleção de um conjunto de frames similares que se superpõem. Outro método

de reconstrução 3D densa é apresentado em (PIZZOLI; FORSTER; SCARAMUZZA,

23

2014), que tenta diminuir as limitações de profundidade nas cenas de métodos como o

anterior através do uso de métodos probabiĺısticos bayesianos, obtendo assim uma melhor

performance em diferentes tipos de cena.

Além disso, com a melhora dos sistemas de aquisição, foram evidenciadas dificuldades

para gerenciar v́ıdeos com elevadas taxas de frames e com resoluções cada vez maiores.

O método proposto em (RESCH et al., 2015) busca atender esses requisitos, obtendo

performance robusta para framerates de 25-120Hz e com resoluções de 2-20 megapixels.

Para tanto, os autores estabelecem um pipeline de SfM que combina o uso do algoritmo KLT

entre frames adjacentes, com caracteŕısticas SIFT entre frames espaçados da sequência,

bem como utilizam métodos de refinamento intermediário e global para produzir uma

estimativa robusta dos movimento e da estrutura.

Finalmente, é importante destacar que, ao longos dos anos e sobretudo mais

recentemente, passou a haver uma intersecção natural entre os trabalhos de SfM a partir

de um v́ıdeo e aqueles de Simultaneous localization and mapping (SLAM), sendo posśıvel

encontrar trabalhos que tratam de maneira indistinta o problema de SLAM monocular

e o de SfM em tempo real. Entretanto, como o problema geral de SLAM apresenta por

si só uma vasta literatura que foge ligeiramente do escopo desse trabalho, ele não será

detalhado.

24

3 Pipeline proposto

O pipeline desenvolvido nesse trabalho será apresentado nas seções a seguir. Em

primeiro lugar, serão apresentados suas caracteŕısticas gerais, bem como os objetivos e as

justificativas para cada escolha de design. Em seguida, as etapas essenciais do pipeline serão

detalhadas: o processamento preliminar dos dados e calibração da câmera; o algoritmo

de detecção de pontos de interesse ao longo dos diferentes frames do v́ıdeo; os diferentes

aspectos da reconstrução incremental; e, finalmente, a etapa de otimização.

3.1 Visão geral

Como mencionado anteriormente, o objetivo desse trabalho consiste em desenvolver

um pipeline que seja capaz de reconstruir a estrutura tridimensional de uma cena estática,

bem como os movimentos de translação e rotação da câmera, a partir de uma sequência

de frames de um v́ıdeo. O grande interesse de se desenvolver um pipeline desse tipo seria,

futuramente, tentar utilizá-lo em aplicações de realidade aumentada, em que a sequência

de frames seria capturada por dispositivos como smartphones ou óculos de realidade

aumentada e, ao mesmo tempo, ela seria processada de forma a produzir para o usuário,

em tempo real, as informações de estrutura 3D e movimentos recuperadas pelos algoritmos

implementados. O interesse do trabalho apresentado poderá possivelmente se estender,

portanto, para além da construção do pipeline em si, uma vez que também poderá ser

eventualmente empregado como base para que se estabeleça uma análise da performance e

limitações dessa abordagem e, assim, a viabilidade de sua utilização.

Dessa forma, mesmo que esse trabalho seja preliminar e anterior a essas aplicações

futuras, posśıveis requisitos impostos por elas foram considerados durante o desenvolvi-

mento. Concretamente, buscou-se propor um pipeline que, conceitualmente, fosse capaz

de funcionar em tempo real. Para tanto, não só foram escolhidos algoritmos de menor

complexidade computacional nas diferentes etapas do processamento para que se tivesse

um ganho em velocidade, mas principalmente foi necessário garantir que a reconstrução

da cena pudesse ser feita de maneira sequencial, conforme novos frames fossem sendo

adquiridos pela câmera. Por isso, abordagens que implicariam a necessidade de se processar

o v́ıdeo em sua integralidade para seu funcionamento foram descartadas. É importante

25

frisar, entretanto, que a implementação efetiva de uma versão em tempo real foge do

escopo desse trabalho e que apenas foram feitos esforços para que uma eventual adaptação

pudesse ser realizada de maneira mais simples.

Portanto, tendo em vista esses objetivos, um pipeline de Structure from Motiom

incremental foi desenvolvido. Cada etapa será detalhada nas próximas seções, porém, de

maneira geral, o pipeline pode ser dividido inicialmente em duas etapas principais: feature

tracking , que corresponde à detecção e ao acompanhamento de pontos de interesse entre

os diferentes frames do v́ıdeo; e reconstrução incremental, que permite efetivamente

que seja criada sequencialmente uma nuvem de pontos 3D da cena observada, assim como

a trajetória da câmera, com suas mudanças de orientação e posição ao longo dos frames, a

partir da evolução desses pontos de interesse detectados.

Dada a natureza sequencial de um v́ıdeo, com pequenos deslocamentos fotométricos

entre os frames, a etapa de detecção e acompanhamento dos pontos de interesse foi

realizada através do algoritmo KLT. Essencialmente, a implementação utiliza o detector

de Shi-Tomasi para encontrar os pontos de interesse no primeiro frame útil do v́ıdeo

e uma versão do algoritmo de fluxo óptico de Lucas-Kanade, que utiliza representação

de imagem em pirâmides, para acompanhá-los nos frames subsequentes. Além disso, de

modo a ser posśıvel tratar v́ıdeos com duração arbitrária, conforme as features seguidas

vão sumindo da cena, também foi proposta uma forma de reinicializá-las, de modo a

se adicionar outras e, ao mesmo tempo, manter a coerência ao longo de todo v́ıdeo. Os

detalhes serão explicitados nas seções a seguir.

Uma vez detectados pontos de interesse nos diferentes frames, é posśıvel realizar

a reconstrução dos pontos 3D e da trajetória da câmera. Tendo em vista os objetivos

desse trabalho, optou-se pelo que é conhecido como reconstrução incremental. Nesse tipo

de abordagem, a partir de dois frames que sejam considerados bons, é preciso inicializar

a nuvem de pontos e as posições da câmera. Isso é feito utilizando-se o algoritmo de 5

pontos para encontrar a matriz essencial e, consequentemente, as matrizes de projeção da

câmera em cada um dos dois frames ; através da triangulação dos pontos reprojetados por

essas matrizes, é posśıvel encontrar a nuvem de pontos 3D inicial. Como será mostrado

posteriormente, uma inicialização adequada é fundamental para a obtenção de uma boa

reconstrução.

Em seguida, conforme novos frames são adquiridos, os deslocamentos da câmera

correspondentes a essas novas imagens, bem como eventuais novos pontos 3D que são

26

reconstrúıdos, são incorporados, respectivamente, na trajetória e na nuvem de pontos

existentes até então. Isso é feito de maneira análoga à inicialização: a matriz essencial é

estimada e em seguida, os pontos 3D são recuperados através de triangulação. Entretanto,

como o algoritmo de 5 pontos fornece uma igualdade a menos de escala, simplesmente

repetir o procedimento anterior forneceria apenas a direção de translação da câmera,

bem como não garantiria que os pontos 3D estariam na mesma escala em diferentes

reconstruções. Para resolver esses problemas é preciso introduzir uma etapa intermediária

para recuperação do movimento da câmera, conhecido algoritmo Perspective-n-Point (PnP),

em que a informação 3D reconstrúıda até então é utilizada para estimar a translação e

rotação da câmera, de modo a manter a coerência de escala. Assim, o algoritmo de 5 pontos

serve como estimativa inicial de movimento da câmera, que é corrigido em seguida pelo

algoritmo PnP. A partir dessa estimativa do movimento em escala correta, a triangulação

pode ser então realizada pra se obter os pontos 3D.

Finalmente, a última etapa do algoritmo representa um processo de otimização dos

pontos 3D obtidos e, ao mesmo tempo, da trajetória da câmera, conhecido como Bundle

Adjustment. Partindo-se da nuvem de pontos 3D e das matrizes de projeção da câmera

estimadas ao longo da trajetória, é posśıvel reprojetar esses pontos e comparar com o

que foi observado originalmente nos frames do v́ıdeo. Assim, definindo-se uma função

objetivo que calcula o erro total dessas reprojeções, é posśıvel estabelecer um problema de

otimização, em que se busca minimizar esse erro para que sejam obtidos os pontos 3D e a

trajetória da câmera que melhor explicam os dados observados. Essa etapa é fundamental

para a correção de erros de estimação que inevitavelmente são introduzidos devido às

mais diversas fontes de erro, sobretudo rúıdo nos frames que podem acarretar erros de

correspondência entres os pontos de interesse seguidos.

27

O diagrama abaixo representa, portanto, um resumo do pipeline proposto e des-

crito brevemente acima. Cada uma das etapas será discutida em maiores detalhes nas

próximas seções, ou seja, os problemas serão apresentados formalmente com sua formulação

matemática correspondente e os algoritmos utilizados para resolvê-los serão descritos.

Figura 3.1 – Diagrama do pipeline de SfM a partir de um v́ıdeo

3.2 Algoritmo KLT e feature tracking

3.2.1 Descrição teórica

O algoritmo de Kanade-Lucas-Tomasi (KLT) para feature tracking é constitúıdo

de duas etapas fundamentais: em um frame inicial são detectados pontos de interesse

usando o que é conhecido como detector de Shi-Tomasi e, em seguida, esses pontos são

encontrados nos frames subsequentes através da estimativa do fluxo óptico pelo método

de Lucas-Kanade, que permite encontrar o deslocamento dos pontos de interesse entre

frames. Como o detector de Shi-Tomasi é baseado nas equações de Lucas-Kanade, é preciso

entender inicialmente o conceito de fluxo óptico.

De maneira geral, o fluxo óptico representa a distribuição de velocidades aparentes

dos elementos de uma imagem causados pelo movimento relativo entre a câmera e a cena

observada. Dessa forma, sendo I(ux, uy, t) a intensidade do pixel em (x, y) no instante

t, estimar o fluxo óptico entre dois frames observados com um intervalo de ∆t entre

eles, significa encontrar essencialmente o campo de velocidades (vx, vy) que transforma

I(ux, uy, t) em I(ux + ∆ux, uy + ∆uy, t+ ∆t). O método de estimação de Lucas-Kanade

pertence à categoria dos chamados métodos diferenciais, isto é, métodos que assumem

pequenos deslocamentos ∆ux e ∆uy entre os dois frames.

Sob a hipótese diferencial, é posśıvel aproximar em primeira ordem a nova in-

tensidade I(ux + ∆ux, uy + ∆uy, t + ∆t) através da sua expansão em série de Taylor

28

I(ux+∆ux, uy+∆uy, t+∆t) = I(ux, uy, t)+
∂I

∂ux
∆ux+

∂I

∂uy
∆uy+

∂I

∂t
∆t+O(∆u2x,∆u

2
y,∆t

2)

(6)

Assim, linearizando a equação em torno de (x, y, t) tem-se

∂I

∂ux
∆ux +

∂I

∂uy
∆uy +

∂I

∂t
∆t = 0 (7)

e dividindo-a por ∆t
∂I

∂ux
vx +

∂I

∂uy
vy +

∂I

∂t
= 0 (8)

de modo que definindo v = (vx, vy), ∇I = (Ix, Iy) = (∂xI, ∂yI) e It = ∂tI, pode ser

reescrita de forma compacta como

∇I · v = −It (9)

sendo que a expressão na forma acima é conhecida como equação do fluxo óptico.

É posśıvel notar que, de maneira geral, conhecida a distribuição de intensidades

nos dois frames, temos uma única equação com as duas incógnitas vx e vy, de modo que

é imposśıvel estimar o fluxo óptico diretamente a partir de um único pixel e, portanto,

é necessário introduzir alguma restrição extra para a resolução do problema. O método

proposto por Lucas e Kanade assume, então, que o fluxo óptico é aproximadamente

constante em uma vizinhança do pixel de interesse e resolve as equações (9) com um

método do tipo mı́nimos quadrados para encontrar vx e vy.

Mais explicitamente, dado uma vizinhança de pixels U = (u1,u2, ...,un), sendo

uk = (xk, yk), o método assume que o fluxo óptico v = (vx, vy) é o mesmo para todos os

pixels e, portanto, ∀k ∈ {1, 2, ..., n} vale a equação do fluxo óptico

Ix(uk)vx + Iy(uk)vy = −It(uk) (10)

de modo que escrevendo-se as n equações obtidas em forma matricial, obtém-se
Ix(u1) Iy(u1)

Ix(u2) Iy(u2)
...

...

Ix(un) Iy(un)


vx
vy

 =


−It(u1)

−It(u2)
...

−It(un)

 (11)

que é um sistema de equações do tipo Av = b sobre-determinado, isto é, com mais

equações do que incógnitas.

29

Sendo assim, é posśıvel resolver esses sistema de equações através do método

de mı́nimos-quadrados. Para tanto, transforma-se a matriz A em matriz quadrada

multiplicando-a por sua transposta A>Av = A>b, de modo que v = (A>A)−1A>b,

ou seja vx
vy

 =

 ∑
k Ix(uk)2

∑
k Ix(uk)Iy(uk)∑

k Iy(uk)Ix(uk)
∑

k Iy(uk)2

−1 −∑k Ix(uk)It(uk)

−
∑

k Iy(uk)It(uk)

 (12)

o que permite recuperar os valores de vx e vy e, consequentemente, calcular o deslocamento

de um pixel dessa vizinhança de um frame ao seguinte.

Dessa forma, para que o método de estimação do fluxo óptico de Lucas-Kanade

funcione, é necessário que a matriz S = A>A seja inverśıvel. Partindo-se dessa observação,

Shi e Tomasi propuseram então um detector de pontos de interesse que garantiria um

bom funcionamento do método de estimação do fluxo óptico, isto é, que impusesse a

não-singularidade da matriz S. De um ponto de vista puramente teórico, sendo S ∈ R2×2,

ela possui dois autovalores λ1 e λ2, de modo que para ser inverśıvel bastaria garantir que

λ1, λ2 > 0. Entretanto, na prática, devido a presença de rúıdo, é necessário impor que os

autovalores sejam superiores a um threshold λ ∈ R+, relacionado a esse ńıvel de rúıdo,

para garantir estabilidade numérica da matriz na hora da inversão. Além disso, outra

exigência numérica para a inversibilidade da matriz seria seu bom condicionamento, isto é,

que os dois autovalores possúıssem a mesma ordem de grandeza, de modo que λ1/λ2 ∼ 1.

É interessante notar que S = (∇I)(∇I)>, de modo que os autovalores λ1 e λ2

representam a magnitude do gradiente (∇I) local da imagem em cada uma das duas

direções. Mais precisamente, se λ1 > 0 e λ2 = 0, isso significa que a imagem só varia em

uma única direção, aquela do autovetor associado a λ1, enquanto tem variação nula na

outra (e de modo análogo para λ1 = 0 e λ2 > 0). Em termos práticos, na imagem, isso se

traduz pela existência de uma linha reta. Por outro lado, se λ1 = λ2 = 0, não há variação

do gradiente em nenhuma direção e, assim, isso significa a existência de uma zona plana e

continua na imagem. Finalmente, se λ1 = λ2 > 0, o gradiente varia igualmente em todas

as direções e podemos associá-lo a presença de um vértice na região da imagem.

O detector de Shi-Tomasi consiste, então, em um detector de regiões com vértices

na imagem. Para isso, basta percorrê-la por janelas de vizinhança, estimar a matriz S

e calcular seus autovalores. Caso min(λ1, λ2) > λ e λ1/λ2 ∼ 1, essa janela pode ser

considerada como possuindo um vértice de interesse, cuja evolução ao longo dos frames

30

poderá ser bem estimada pelo método do fluxo óptico de Lucas-Kanade. Isto é, o pixel uk

de uma janela detectada no instante t estará na posição (ukx + vx∆t, uky + vy∆t) no frame

seguinte t+ ∆t. Assim, a cada frame, basta partir da posição anterior conhecida, calcular o

fluxo óptico nas janelas detectadas usando as equações (12) e atualizar as novas posições.

3.2.2 Implementação piramidal

A hipótese fundamental para o funcionamento do algoritmo KLT descrito acima é a

condição de pequenos deslocamentos, a partir da qual é posśıvel obter a equação do fluxo

óptico linearizada (9) e todas as outras relações que regem o funcionamento do algoritmo.

Assim, seria necessário produzir um v́ıdeo cujos deslocamentos entre frames fossem da

ordem de menos de 1 pixel, o que não é viável considerando-se uma aquisição habitual

de um v́ıdeo, mesmo com framerates elevados. Para atacar esse problema e aumentar a

robustez geral do algoritmo, em (BOUGUET et al.,) foi proposta uma implementação

do método de estimação do fluxo óptico de Kanade-Lucas utilizando a representação da

imagem em pirâmide.

De maneira geral, uma pirâmide de imagens consiste em uma sequência de réplicas

dessa imagem que são geradas aplicando-se filtros de suavização e, em seguida, sub-

amostrando a imagem resultante. O objetivo de tal representação é obter uma sequência de

imagens com ńıveis decrescentes de resolução. Assim, partindo-se da imagem original I, de

tamanhos nx e ny em cada uma das suas direções, e considerando-a como sendo o ńıvel zero,

isto é, I0 = I, é posśıvel construir recursivamente essa sequência de imagens I1, I2, ..., IL

de modo que no ńıvel L tenha-se imagens com o mesmo conteúdo e de dimensões

nL
x ≤

nL−1
x + 1

2
e nL

y ≤
nL−1
y + 1

2
(13)

isto é, grosso modo, as dimensões são divididas por 2 a cada ńıvel.

31

O interesse desse tipo de abordagem é que o fluxo óptico pode ser estimado em

qualquer um dois ńıveis superiores da pirâmide de imagem e, em seguida, propagado aos

ńıveis inferiores e de maior resolução. Como mostrado no trabalho original, no ńıvel L da

pirâmide, a relação entre o fluxo óptico nessa resolução vL e o fluxo óptico real v é dado

por:

vL =
v

2L
(14)

o que significa que, para o t́ıpico valor de L = 4, a magnitude do fluxo óptico no quarto

ńıvel é 16 vezes menor do que na imagem com resolução original.

Portanto, esse tipo de abordagem permite recolocar v́ıdeos com deslocamentos

arbitrários entre frames nas condições de pequenos deslocamentos que são exigidas por

hipótese pelo método de Lucas-Kanade, bastando-se aumentar o número de ńıveis da

pirâmide calculados. Evidentemente, essa abordagem possui limitações e, iniciar estimativas

a partir de imagens com resolução muito baixa pode acabar degradando o resultado final

e, como apontado no trabalho original (BOUGUET et al.,), tipicamente reduções de 3 a 4

ńıveis são suficientes para a obtenção de um bom compromisso entre redução significativa

da magnitude deslocamentos e qualidade da imagem para a estimativa.

3.2.3 Gerenciamento das features

Finalmente, um último problema com a implementação básica do KLT que precisou

ser adaptado foi o gerenciamento e inclusão de novas features detectadas e acompanhadas.

Isso porque, em sua versão inicial, o algoritmo em primeiro lugar detecta vértices de

interesse no primeiro frame através do método de Shi-Tomasi e os acompanha nos frames

seguintes, estimando seus deslocamentos através do fluxo óptico de Lucas-Kanade.

Entretanto, para v́ıdeos mais longos, é posśıvel que todas features detectadas no

primeiro frame eventualmente saiam de quadro, de modo que se não for inclúıda nenhuma

regra de atualização e inclusão de novas features, o restante da sequência de frames não terá

pontos observados e, consequentemente, não será posśıvel realizar as etapas seguintes de

reconstrução. Dessa forma, foi necessário desenvolver essa regra de atualização e inclusão de

novos pontos de interesse que passariam a ser acompanhados, de modo a manter a coerência

entre os pontos antigos e os novos. Isso foi feito baseando-se em (ESCRIVá; MENDONçA,

2019), onde foi desenvolvido um método para se estabelecer essa correspondência de pontos

32

detectados a cada atualização.

Seja L1 a matriz cujas linhas l11, l
1
2, ..., l

1
n representam as n features acompanhadas

inicialmente pelo KLT. Assim que dado o sinal de reset, uma nova matriz L2 será formada,

com m novas features. A correspondência entre L1 e L2 é feita, então, através da matriz

C, com n linhas e m colunas, cuja entrada cij será dada por

cij =

1, se ||l1i − l2j || ≤ λp

0, caso contrário

(15)

isto é, caso as features l1i e l2j estejam à uma distância em pixels menor que um determinado

threshold λp definido, elas são consideradas iguais; caso contrário, é posśıvel afirmar que

elas estão distantes o suficiente para serem classificadas como diferentes.

Em seguida, para cada coluna j da matriz de correspondência, é posśıvel calcular a

soma σj em todas as linhas de C

σj =
n∑

i=1

cij (16)

de modo a se obter um vetor Σ = [σ1 σ2 ... σm], cujas componentes nulas correspondem

exatamente às features de L2 consideradas suficientemente distantes de todas as features

já existentes em L1 e que, portanto, podem ser incorporadas.

Assim, a matriz L1 é incrementada com as linhas jk de L2, tais que σjk = 0,

formando uma nova matriz L′1 dada por

L′1 =



l11
...

l1n

l2j1
...

l2jk


(17)

É importante notar que, naturalmente, as features do KLT vão deixando de ser

acompanhadas conforme vão sumindo do quadro e que, adicionalmente, o sinal de reset

para incrementar a matriz ocorre quando o número de linhas fica abaixo de um certo

limite inferior. Com isso, é posśıvel garantir que o número de features acompanhadas esteja

sempre aproximadamente constante, sem aumentar muito o número ou, inversamente, ficar

sem nenhuma.

33

3.2.4 Etapa de feature tracking resultante

Dessa forma, a etapa de feature tracking pode ser resumida através dos seguintes

passos descritos a seguir:

1. No primeiro frame a matriz L de features é inicializada com as coordenadas uk =

(ukx, u
k
y) dos vértices encontrados pelo detector de Shi-Tomasi;

2. Para os frames subsequentes, o fluxo óptico correspondente vk = (vkx, v
k
y) de Lucas-

Kanade é estimado em cada vizinhança dos vértices encontrados;

3. As posições uk da matriz L são atualizadas com u′k = (ukx + vkx∆t, uky + vky∆t). Caso

a nova posição seja fora do quadro da câmera, a feature é descartada de L;

4. Caso o número de features acompanhadas caia abaixo de um determinado valor,

o detector de Shi-Tomasi é usado novamente e novas features são incorporadas à

matriz L como descrito na seção anterior;

5. Os passos 2 a 4 são repetidos até que todos os frames do v́ıdeo tenham sido

processados.

34

3.3 Structure from Motion incremental

De maneira formal, o framework de SfM incremental pode ser descrito da seguinte

maneira: dado um conjunto de pixels de interesse U = {u1,u2, ...,uk}, obtidos na etapa

de feature tracking a partir de m frames de matrizes de projeção P = {P1,P2, ...,Pm} e

n pontos tridimensionais X = {X1,X2, ...,Xn} inicialmente desconhecidos. O objetivo é

estabelecer um pipeline capaz de produzir estimativas de matrizes e pontos conforme os

frames vão sendo observados.

Isto é, após a inicialização da nuvem de pontos estimada X̂ = {X̂1, X̂2, ..., X̂r}, r ≤

n, e das matrizes de projeção dos dois primeiros frames P̂ = {P̂1, P̂2}, a cada frame

observado, uma nova matriz de projeção necessariamente será estimada e incorporada no

conjunto de estimativas P̂ e, caso algum ponto 3D novo seja reconstrúıdo, ele também

será incorporado no seu respectivo conjunto X̂ .

Assim, no k-ésimo frame processado após a inicialização, teremos P̂ = {P̂1, P̂2, ..., P̂k}

e X̂ = {X̂1, X̂2, ..., X̂r+l}, 0 ≤ l ≤ n− r, com cada nova estimativa incorporada sendo feita

apenas com base nas informações reconstrúıdas até então. Esse processo de incorporação

de matrizes de projeção e pontos ocorre, então, até que todos os frames tenham sido

processados. A seguir, cada uma das etapas necessárias para se estabelecer esse processo

de reconstrução incremental serão detalhadas.

3.3.1 Inicialização

Na etapa de inicialização não existe nenhuma estrutura tridimensional já recons-

trúıda e, assim, a única informação dispońıvel é aquela dos pontos projetados 2D e suas

correspondências entre dois frames. Como mencionado anteriormente, esse problema pode

ser resolvido então utilizando-se a restrição epipolar da equação (4), o que é feito através

de uma classe de algoritmos conhecidos como algortimos de n pontos. Devido a maior

precisão, menor sensibilidade ao rúıdo e por não sofrer do problema conhecido como

degeneração planar (basicamente, existência de ambiguidades na solução da restrição

epipolar) o algoritmo de 5 pontos introduzido por Nistér em (NISTÉR, 2004) foi utilizado.

35

De maneira simplificada, partindo-se da equação epipolar entre os pixels correspon-

dentes ũ e ũ′ de dois frames distintos

ũ>(K−1)>EK−1ũ′ = 0 (18)

em que K é a matriz de calibração da câmera suposta conhecida, o algoritmo de 5 pontos

busca estimar a matriz essencial E considerando duas restrições adicionais sob sua estrutura

det(E) = 0 (19)

EE>E− 1

2
tr(EE>)E = 0

demonstradas, por exemplo, em (FAUGERAS; FAUGERAS, 1993). Essas restrições dimi-

nuem os 9 graus de liberdade originais para apenas 5, de modo que teoricamente apenas

5 pontos correspondentes entre as imagens precisam ser utilizados. Na prática, mais do

que 5 correspondências são utilizadas de modo a se aumentar a robustez da solução, o

que gera um sistema de equações sobre-determinado e, portanto, garante uma solução no

sentido de mı́nimos-quadrados.

A equação (18) pode ser vista, basicamente, como um sistema linear homogêneo

nos parâmetros da matriz essencial, cuja solução pode ser encontrada, portanto, por

decomposição em valores singulares (SVD). Assim, dado o sistema de m × 9 equações

introduzido por (18), com m ≥ 5, dependendo do número de correspondências utilizado,

sua solução será uma combinação linear das 4 matrizes Mi associadas aos 4 valores

singulares de menor magnitude:

E =
4∑

i=1

αiMi (20)

e como na prática as estimativas realizadas são obtidas a menos de um fator de escala, é

posśıvel impor α4 = 1 e reescrever a equação em termo dos coeficientes restantes α̃i = αi/α4

E = α̃1M1 + α̃3M3 + α̃3M3 + M4 (21)

Assim, substituindo-se (21) em (19), obtém-se um sistema de equações polinomiais

nos coeficientes α̃i, cuja solução permite determinar completamente E. Nistér propõe,

então, um método eficiente para encontrar as ráızes desse sistema de equações polinomiais,

cujo detalhamento foge do escopo desse texto e pode ser consultado em seu trabalho

original (NISTÉR, 2004).

36

Uma vez encontrada a matriz essencial, é necessário recuperar a matriz de rotação

R e o vetor de translação t associados ao movimento que leva a câmera de um frame ao

seguinte, usando a definição da matriz essencial apresentada anteriormente

E ∼ [t]×R (22)

em que [t]× é a matriz de produto externo associada ao vetor de translação e dada por

[t]× =


0 −tz ty

tz 0 −tx
−ty tx 0

 (23)

Isso é feito realizando-se a decomposição em valores singulares da matriz essencial

E = UΣV>, com Σ = diag(1, 1, 0) e U e V tais que det(U) > 0 e det(V) > 0. Como

mostrado em (HARTLEY; ZISSERMAN, 2003), definindo-se

D =


0 1 0

−1 0 0

0 0 1

 (24)

tem-se que t ∼ tu = [u13 u23 u33]
> e R ∼ Ra = UDV> ou R ∼ Rb = UD>V>.

Consequentemente, qualquer uma das combinações de translação e rotação anteriores

produz uma matriz essencial que satisfaz a equação epipolar (18).

Para resolver essas ambiguidades e encontrar uma solução única, é preciso fixar a

matriz de projeção do primeiro frame como sendo P ∼ K[I3 | 0] e arbitrar uma translação

tu unitária entre os frames. Com isso, existem basicamente 4 possibilidades para a matriz

de projeção do segundo frame: P′A ∼ K[Ra | tu], P′B ∼ K[Ra | − tu], P′C ∼ K[Rb | tu],

P′D ∼ K[Rb | − tu], sendo apenas uma delas correspondente ao movimento real. A outra

solução representa aquela obtida se uma das projeções for rotacionada de 180o e as duas

restantes são as soluções espelhadas correspondentes às duas anteriores.

A escolha da solução correta deve ser feita utilizando o chamado cheirality check

que, basicamente, a partir de um ponto 3D triangulado usando uma das posśıveis soluções,

permite checar qual matriz de projeção garante que o ponto esteja de frente com a câmera

e na orientação projetada correta (NISTÉR, 2004). Como resultado, obtém-se portanto

as duas primeiras matrizes de projeção estimadas P̂1 ∼ K[I3 | 0] e P̂2 ∼ K[R1→2 | t1→2],

com ||t1→2|| = 1

37

Estimadas a matrizes de projeção, a última etapa da inicialização consiste em

triangular os pixels para obter os pontos tridimensionais correspondentes. O algoritmo

de triangulação básico, descrito em (HARTLEY; ZISSERMAN, 2003), é conhecido como

Direct Linear Transform (DLT) e consiste, novamente, na solução de um sistema linear

homogêneo sobre-determinado, através de uma decomposição em valores singulares da

matriz do sistema.

Esse sistema é obtido da seguinte forma: dado um ponto tridimensional X e suas

projeções em dois frames distintos u = [u v] e u′ = [u′ v′], tem-se que u = PX e u′ = P′X.

Realizando um produto vetorial dos dois lados de cada equação de projeção, obtém-se

então u× (PX) = 0 e u′ × (P′X) = 0, que são equações lineares nas componentes de X

da forma:

(up3> − p1>)X = 0

(vp3> − p2>)X = 0 (25)

(up2> − vp1>)X = 0

Como a terceira equação é uma combinação linear das duas primeiras, uma vez que

temos up2> − vp1> = −u(vp3> − p2>) + v(up3> − p1>), cada par de pontos projetados

correspondentes fornece 4 equações que podem ser escritas na forma homogênea AX = 0

A =


up3> − p1>

vp3> − p2>

u′p′3> − p′1>

v′p′3> − p′2>

 (26)

cuja solução X̂ corresponde ao vetor associado ao menor valor singular de A e, portanto,

fornece a melhor estimativa de X no sentido de mı́nimos-quadrados.

Assim, considerando-se r pontos tridimensionais X1,X2, ...,Xr e seus respectivos

pares de projeção nos dois frames iniciais u11,u12,u21,u22, ...,ur1,ur2, em que uij repre-

senta o i-ésimo ponto tridimensional projetado no j-ésimo frame, obtidos na etapa de

feature tracking, bem como as matrizes de projeção P̂1 e P̂2 estimadas anteriormente pelo

algoritmo de 5 pontos, basta aplicar o algoritmo DLT descrito acima para que se obtenha

então a estimativa dos r pontos 3D triangulados X̂1, X̂2, ..., X̂r

38

3.3.2 Refinamento da inicialização e incorporação de novos frames

Uma vez inicializadas as estimativas da nuvem de pontos 3D X̂ = {X̂1, X̂2, ..., X̂r}

e das matrizes de projeção frames P̂ = {P̂1, P̂2}, o próximo passo consiste na adição

incremental de novos frames P̂2 para a composição de trajetória da câmera e, em seguida,

a triangulação de eventuais novos pontos X̂r+l nunca antes vistos na cena.

De maneira análoga à inicialização, a estimativa da matriz de projeção poderia ser

feita através do algoritmo de 5 pontos descrito anteriormente. Entretanto, como mostrado,

a solução do algoritmo impõe P̂k−1 ∼ K[I3 | 0] e P̂k ∼ K[R(k−1)→k | t(k−1)→k], sendo

||t(k−1)→k|| = 1. Isso significa que só seria posśıvel recuperar a direção do movimento

relativo entre os frames, sendo imposśıvel distinguir translações de magnitudes diferentes

e, consequentemente, a trajetória recuperada não corresponderia a realidade.

Uma forma de contornar esse problema é utilizar o algoritmo de Perspective-n-

Points, que utiliza a informação da nuvem 3D já reconstrúıda para estimar a matriz de

projeção, uma vez que baseia-se na correspondência entre os pontos tridimensionais e os

pixels observados. Com a nuvem 3D inicializada na etapa anterior, esse tipo de abordagem

torna-se viável. Partindo-se dos r pontos tridimensionais em X̂ , que estão expressos em um

sistema de referência global, cada projeção do i-ésimo ponto no j-ésimo frame uij = [uijx uijy]

será dada pela chamada equação de colinearidade

uijx =
(rj1)

>Xi + tjx
(rj3)

>Xi + tjz
(27)

uijy =
(rj2)

>Xi + tjy

(rj3)
>Xi + tjz

sendo rjk a k-ésima linha da matriz de rotação Rj do j-ésimo frame

Rj =


rj1

rj2

rj3

 (28)

e tj = [tx ty tz] o seu vetor de translação associado. Dessa forma, conhecidos os pontos

e suas projeções correspondentes, as equações acima fornecem uma forma de achar os

parâmetros de rotação e translação desconhecidos.

39

Como mostrado em (LEPETIT; MORENO-NOGUER; FUA, 2009), métodos ite-

rativos garantem as melhores performances nessa tarefa. Essencialmente, partindo-se de

uma estimativa inicial para Rj e tj é posśıvel definir a seguinte função objetivo

f(Rj, tj) =
r∑

i=1

(uijx − (rj1)
>Xi + tjx

(rj3)
>Xi + tjz

)2

+

(
uijy −

(rj2)
>Xi + tjy

(rj3)
>Xi + tjz

)2
 (29)

que representa, essencialmente, o erro de reprojeção do ponto 3D no frame. Definindo

Θ = (Rj, tj), a solução ótima para o problema Θ̂ = (R̂j, t̂j) será dada minimizando esse

erro de reprojeção

Θ̂ = arg min
Θ

f(Θ) (30)

Usualmente, o método de otimização empregado nessa classe de problemas é conhe-

cido como Levenberg-Marquardt, ou mı́nimos-quadrados amortecido, que será explicitado

na próxima seção. Como será visto, sendo uma otimização não-linear, a qualidade da

solução depende fortemente da estimativa inicial. Uma possibilidade para uma boa inicia-

lização do problema, sobretudo para a matriz de rotação Rj, é a utilização do algoritmo

de 5 pontos apresentado anteriormente. Entretanto, sendo o vetor de translação unitário,

ele pode estar muito longe de um bom chute inicial, principalmente no caso em que há um

grande deslocamento da câmera entre frames.

De modo a se obter estimativas mais robustas, portanto, foi utilizado o algo-

ritmo conhecido como Efficient Perspective-n-Points (EPnP), proposto em (LEPETIT;

MORENO-NOGUER; FUA, 2009). Essencialmente, o método representa um algoritmo

não-iterativo de complexidade linear capaz de resolver o problema de recuperação das

matrizes de rotação e translação a partir de pontos 3D e suas respectivas projeções. O

detalhamento do método foge do escopo desse trabalho e pode ser consultado em sua

publicação original. De toda forma, os autores mostram que a combinação desse método

com uma otimização simples como a descrita acima permite que se obtenham resultados

comparáveis ao estado-da-arte que algoritmos iterativos mais complexos produzem. Dessa

forma, dado o equiĺıbrio entre performance e velocidade de processamento, esse método

foi escolhido.

O resultado da otimização permite, portanto, estimar a matriz de projeção do

j-ésimo frame P̂j ∼ K[R̂j | t̂j] e, consequentemente, triangular eventuais novos pontos

tridimensionais X̂, conforme descrito na seção anterior, incrementando, assim, a cada

frame, os conjuntos de estimativas P̂ e X̂ sequencialmente.

40

É importante notar que, ao utilizar essa abordagem, todos os frames serão pro-

cessados baseando-se nas informações tridimensionais recuperadas, essencialmente, nos

dois primeiros, de modo que é preciso garantir que o primeiro passo garantirá um bom

comportamento do pipeline ao longo do resto do v́ıdeo. Assim, caso necessário, é posśıvel

refinar a inicialização com alguns dos frames processados com o método descrito acima e,

em seguida, avaliar a evolução do erro de reconstrução para garantir que a inicialização foi

adequada e, caso contrário, recomeçar o processo.

Mais precisamente, uma vez feita a inicialização como descrita na seção anterior, é

posśıvel processar k frames utilizando o PnP como descrito acima e, por fim, aplicando

a otimização global que será detalhada na próxima seção. De um ponto de vista teórico,

isso significa que os pontos reconstrúıdos e as k + 2 matrizes de projeção estimadas são

tais que minimizam o erro emṕırico de reprojeção. Como a função objetivo depende da

quantidade de pontos observados, é posśıvel que a solução encontrada corresponda a um

mı́nimo local e espećıfico desses frames iniciais, de modo que não necessariamente causará

uma melhora nos resultados dos demais frames seguidos.

Para lidar com esse problema, outros p frames seguintes são processados como

anteriormente, mas com a nova nuvem de pontos otimizada, e o erro de reprojeção de

cada um deles é calculado. Caso o erro médio fique abaixo de um determinado threshold, a

inicialização e demais reconstruções realizadas até então são consideradas satisfatórias e

os demais frames são processados e as respectivas matrizes de projeção e pontos 3D são

inclúıdos normalmente nos seus respectivos conjuntos. Caso contrário, a inicialização é

considerada ruim e desloca-se de um a janela dos k+ p+ 2 frames processados, jogando-se

fora, portanto, o primeiro e reiniciando-se as reconstruções com os demais. Esse processo

é repetido até que a condição de erro mı́nimo seja satisfeita, momento a partir do qual

o algoritmo segue normalmente como explicado até que se terminem os frames a serem

processados.

41

3.3.3 Bundle Adjustment

A última etapa do pipeline consiste na otimização conjunta dos pontos tridimen-

sionais e das matrizes de projeção estimadas, num processo conhecido como Bundle

Adjustment (BA). Essa etapa deve ser entendida como um refinamento global de P̂ e

X̂ , diferindo portanto dos demais processos iterativos e de otimização descritos, uma vez

que busca encontrar o parâmetros da câmera e os pontos que melhor descrevem os dados

observados em sua totalidade.

Formalmente, dado o conjunto de parâmetros Θ = (P̂ , X̂), formado pelas estima-

tivas iniciais das matrizes de projeção e dos pontos reconstrúıdos, bem como os pixels

projetados originais U , o BA pode ser definido como o seguinte problema de encontrar Θ?

tal que

Θ? = arg min
Θ
L(U ,Θ) (31)

sendo L uma função que fornece uma medida do erro emṕırico, ou reśıduo, entre o modelo

utilizando os parâmetros estimados Θ e os dados observados U .

Tipicamente, considera-se L como sendo a soma do erro quadrático entre os pixels

observados uij e os reprojetados a partir dos parâmetros estimados ûij(Θ) = P̂jX̂i, de

forma análoga à equação (29), que pode ser reescrita de forma mais sucinta como

L(U ,Θ) =
1

2

n∑
i=1

m∑
j=1

[
(uij − ûij(Θ))2 + (vij − v̂ij(Θ))2

]
=

1

2
||r(Θ)||2 (32)

em que ||.|| representa a norma l2 do chamado vetor de reśıduos r(Θ), que possui, em

cada uma das suas coordenadas, o erro de reprojeção para cada um dos pixels observados,

o que é dado por r(Θ) = [u11 − û11(Θ), ...,unm − ûnm(Θ)].

O método de otimização comumente empregado na resolução do problema acima é

chamado algoritmo de Levenberg-Marquardt (LM) (MORÉ, 1978), que essencialmente

representa uma combinação de dois algoritmos de otimização: método de Gauss-Newton

e o método de descida de gradiente. Nesses dois métodos, a ideia central consiste em

encontrar uma regra iterativa de atualização dos parâmetros do tipo Θk+1 = Θk + hk, que

faça Θ convergir para Θ? a partir de uma estimativa inicial Θ0.

No caso do algoritmo de descida do gradiente, a regra de atualização na k-ésima

iteração hk é feita na direção oposta do gradiente de L(U ,Θ) em relação aos parâmetros

Θk obtidos até então. Isso porque o gradiente de uma função representa sua direção

42

de maior variação e, ao se caminhar em sua direção oposta, busca-se uma região que

representa um mı́nimo ao menos local. Temos então que

hdg = − ∂L
∂Θ

= − ∂r

∂Θ
r(Θ) (33)

em que ∂r/∂Θ é obtida derivando-se cada um dos reśıduos em relação a cada um dos

parâmetros. Isso define uma matriz que possui P = n×m linhas, isto é, uma por pixel

observado, e Q = dim(Θ) colunas, isto é, uma para cada parâmetro da otimização. Essa

matriz recebe o nome de matriz jacobina J cujas entradas são dadas por

Jpq(Θ) =
∂rp
∂Θq

(Θ) (34)

de forma que, no caso do método da descida de gradiente, tem-se, finalmente

hdg = −Jr(Θ) (35)

o que evidencia que é um método de primeira ordem, em que apenas o gradiente da função

objetivo precisa ser calculado, que apresenta baixa complexidade computacional e boas

propriedades de convergência para funções objetivas mais simples. Porém, para problemas

mais complexos, a convergência pode demorar a ocorrer e se tornar proibitiva.

O algoritmo de Gauss-Newton, por outro lado, representa um algoritmo de ordem

superior, uma vez que sua regra de atualização depende de derivadas de segunda ordem.

Ele baseia-se na hipótese de que o vetor de reśıduos é aproximadamente quadrática perto

do ótimo. Como mostrado em (MORÉ, 1978), isso significa que

[J>J]hgn = −Jr(Θ) (36)

e devido à existência de uma inversão de matrizes, o algoritmo de Gauss-Newton é

relativamente mais complexo, porém garante convergência robusta de uma maior classe de

problemas.

O algoritmo LM introduz um parâmetro de amortecimento λ que faz com que a

otimização seja interpolada entre a descida de gradiente e o método de Gauss-Newton.

Essencialmente, sua direção de otimização é dada por

[J>J + λI]hlm = −Jr(Θ) (37)

em que no ińıcio, λ é grande de modo a favorecer a descida de gradiente e, conforme

o algoritmo se aproxima de um mı́nimo, seu valor é aumentado aos poucos, de modo a

acelerar a convergência usando o método de Gauss-Newton.

43

Além de utilizar o algoritmo LM, para que seja computacionalmente viável aplicar

o BA em larga escala, isto é, com potencialmente centenas ou milhares de frames e, ainda

assim, obter resultados rápidos, é posśıvel utilizar a estrutura de matrizes esparsas para

armazenar o jacobiano, uma vez que a grande maioria das derivadas parciais será igual a

zero. Isso porque cada componente do vetor de reśıduos uij − ûij(Θ) na verdade depende

apenas dos 6 parâmetros de P̂j (3 rotações e 3 translações) e dos 3 parâmetros de X̂i.

Isto é, para n pontos 3D vistos todos em m frames, a matriz jacobiana possui

Q = 6m+ 3n colunas, das quais apenas 9 são não-nulas por linha. Dessa forma, é posśıvel

guardar apenas as entradas não-nulas do jacobiano, o que não só reduz a complexidade

em memória do método, mas principalmente acelera as operações matriciais do jacobiano

envolvidas no cálculo da direção de otimização hlm.

O algoritmo resultante é conhecido, portanto, como Sparse Bundle Adjustment

(SBA) e é particularmente adaptado para aplicações com um grande volume de dados que

precisam ser processados de maneira otimizada, o que é o caso dos frames de um v́ıdeo. É

importante notar que essa etapa pode ser aplicada tanto ao longo do processamento do

v́ıdeo, ao se acumular um determinado número de frames, quanto no final quando todos

os frames já foram adquiridos.

3.3.4 Etapa de reconstrução incremental resultante

Resumidamente, a reconstrução incremental pode ser, então, descrita através da

sequência de passos a seguir:

1. Dados dois frames iniciais, o algoritmo de 5 pontos é utilizado para se se estimar

as respectivas matrizes de projeção P̂1 e P̂2. Com elas, o algoritmo DLT é aplicado

para triangular os r pontos 3D observados X̂1, X̂2, ..., X̂r e inicializar a nuvem de

pontos;

2. A inicialização é, então, refinada utilizando-se a nuvem de pontos inicial para estimar

as matrizes de projeção dos k frames seguintes através do algoritmo EPnP, cuja

solução é refinada por uma otimização com o algoritmo LM;

44

3. O erro de reconstrução é então calculado ao se obter a matriz de projeção dos p

frames subsequentes: caso esse erro seja menor do que um threshold, a inicialização

é considerada adequada e todas as k + p + 2 matrizes de projeção estimadas são

mantidas, bem como eventuais novos pontos 3D são adicionados; caso contrário, os

passos 1 e 2 são repetidos deslocando-se um frame da janela até que o threshold seja

atendido;

4. Os frames seguintes são todos processados utilizando-se EPnP, seguido do refinamento

iterativo, para se estimar as novas matrizes de projeção e, em seguida, triangular

eventuais novos pontos para serem inclúıdos na nuvem existente;

5. A solução é refinada utilizando-se o algoritmo de Sparse Bundle Adjustment para

otimizar as posições da câmera e os pontos 3D reconstrúıdos. Dependendo da

configuração escolhida, essa etapa pode ser feita a cada n frames processados pelo

passo 4 ou apenas no fim do v́ıdeo.

3.4 Processamento dos dados

Além das duas grandes etapas do pipeline proposto, feature tracking e SfM incre-

mental, existem etapas de pré e pós-processamento dos dados que são necessárias para o

funcionamento do método proposto. Mais especificamente, tanto o algoritmo de 5 pontos

para estimação da matriz essencial, quanto o algoritmo de triangulação e, finalmente, o

algoritmo PnP, assumem que a câmera utilizada para aquisição esteja calibrada, isto é, que

a matriz de parâmetros intŕınsecos K seja conhecida. Por isso, para cada novo dispositivo

utilizado para aquisição do v́ıdeo, a etapa de calibração que será descrita na próxima seção

precisa ser realizada antes de se aplicar o restante do pipeline.

Além disso, após o processamento dos frames do v́ıdeo, tanto a nuvem de pontos 3D

quanto a trajetória precisam ser visualizadas. Para tanto, é necessário garantir que todas

as posições e orientações das câmeras, assim como as coordenadas dos pontos reconstrúıdos,

estejam escritas no mesmo referencial. Entretanto, em geral, os algoritmos empregados no

pipeline fornecem referenciais relativos, de modo que uma etapa de conversão entre bases

precisa ser aplicada, como será mostrado adiante.

45

3.4.1 Calibração da câmera

O processo de calibração de uma câmera consiste em recuperar os chamados

parâmetros intŕınsecos dessa câmera, isto é, a matriz K, que em sua forma geral, é dada

por

K =


fu γ cu

0 fv cv

0 0 1

 (38)

em que fu e fv são as chamadas distancias focais em cada uma das direções, cu e cv

são as coordenadas do centro óptico e γ é a chamada torção entre os eixos de projeção.

Usualmente, os pixels são quadrados, de modo que fx = fy e γ = 1, e, além disso, em geral

o centro óptico coincide com o centro da imagem.

O algoritmo de calibração é baseado na trabalho apresentado em (ZHANG, 2000).

Essencialmente, partindo-se de uma série de imagens com pontos de interesse cujas

coordenadas 2D, bem como as coordenadas 3D originais, são conhecidas, é posśıvel obter

os parâmetros intŕınsecos. Para que essas coordenadas sejam conhecidas, um padrão

de calibração conhecido e facilmente detectável deve ser usado. Em geral, esse padrão

corresponde a um quadriculado preto e branco, como um tabuleiro de xadrez. Assim, a

primeira etapa da calibração, que corresponde à detecção dos pontos de interesse nas

diferentes imagens, fica muito mais precisa: utilizando um detector de vértices, como

o descrito na seção 3.2, é posśıvel realizar a correspondência dos vértices do padrão

quadriculado com precisão sub-pixel; além disso, ao se utilizar um tabuleiro plano, é

posśıvel saber a priori que todos os pontos 3D estão no mesmo plano.

Uma vez detectados os pontos em cada uma das imagens, o processo de calibração

consiste em resolver a equação de projeção u = K[R | t]X em que u e X foram determi-

nados na detecção e K e [R | t] precisam ser encontrados. Ao se combinar as equações

de todos os vértices do tabuleiro para todas as imagens, é posśıvel obter um sistema de

equações sobre-determinado e linear nos parâmetros intŕınsecos e extŕınsecos da câmera,

de modo que é posśıvel obter uma solução ótima no sentido de mı́nimos quadrados.

46

3.4.2 Visualização

Como discutido nas seções anteriores, os diferentes algoritmos empregados para

a obtenção da matriz de projeção da câmera e dos pontos tridimensionais não fornecem

os resultados em um sistema de coordenadas absoluto e comum a todos. Ao contrário,

o algoritmo de 5 pontos fornece um deslocamento relativo entre um frame e outro e o

algoritmo PnP fornece as informações de deslocamento e orientação no referencial da

câmera.

Dessa forma, para que seja posśıvel visualizar os pontos 3D e a trajetória da câmera

de maneira coerente, é necessário arbitrar um sistema de referência considerado o global

e, a cada etapa, realizar uma transformação de coordenadas, para que todos os pontos e

matrizes de projeção estejam descritos nesse mesmo sistema de coordenadas. No pipeline

proposto, isso é feito fixando-se o sistema de coordenadas da primeira câmera como sendo

o global e descrevendo as demais câmeras e pontos nesse mesmo sistema.

Para isso, feita a inicialização da nuvem de pontos, que estará naturalmente descrita

no sistema de coordenadas da primeira câmera, basta passar a matriz de rotação Rk e

o vetor de rotação tk estimados no k-ésimo frame no sistema de coordenadas da câmera

para o sistema de coordenada dos pontos 3D.

Isso significa, essencialmente, inverter a matriz homogênea dos parâmetros extŕınsecos

da câmera [R | t] (uma vez que os parâmetros intŕınsecos de calibração independem do

sistema de coordenadas). Isto é, obtém-se [R′ | t′] = ([R | t])−1. Usando-se o fato que a

matriz de rotação é ortogonal, sua inversa é igual sua transposta, de modo que tem-se

finalmente [R′ | t′] = [R> | −R>t]. Aplicando-se essa transformação, portanto, tem-se

todas as matrizes e pontos no mesmo sistema de coordenadas.

47

4 Implementação

Assim como a etapa de concepção teórica do pipeline, a etapa de implementação

é crucial para o bom andamento do projeto e pode ser a diferença entre um projeto

fracassado ou fora das especificações técnicas e administrativas e um projeto de sucesso.

Nessa sessão são abordadas algumas das práticas utilizadas no aux́ılio da implementação do

projeto na seguinte ordem: explicação do código desenvolvido e sua estrutura; explicação

sobre o ambiente de desenvolvimento, dependências e utilização do software desenvolvido;

boas práticas de desenvolvimento utilizadas e outras considerações.

4.1 Execução

Como descrito na seções anteriores, o pipeline proposto tem como objetivo a

reconstrução esparsa de cenas e da trajetória de uma câmera a partir de um v́ıdeo

monocular. Dessa descrição podemos extrair o arquivo de v́ıdeo como a primeira entrada

do software e a reconstrução como sáıda, que pode ser tanto um aquivo com todos os

dados gerados quando uma representação gráfica do resultado.

Porém, visto que os algoritmos utilizados necessitam de diversos parâmetros de

configuração, temos um arquivo contendo esses valores como a segunda entrada do pipeline.

Dessa forma, a execução do pipeline se resume a escolher o v́ıdeo a ser reconstrúıdo,

escolher os parâmetros de configuração adequados, executar o código e, por fim, consumir

a sáıda da forma adequada.

4.2 Estrutura do código

Visto que diversos algoritmos foram implementados, cada um com diferentes entra-

das, sáıdas e condições de utilização, além dos outros componentes que realizam a junção

de todas as partes, a seguinte estrutura foi proposta:

• main.py : ponto de entrada do usuário, responsável por carregar o arquivo de confi-

gurações, instanciar o pipeline, lançar a execução e eventual visualização da recons-

trução ou análise dos dados de erro gerados;

• video pipeline.py : contém a classe VideoPipieline, responsável por orquestrar a

48

resconstrução desde a extração de pontos de interesse do v́ıdeo e etapa de inicialização

da reconstrução até as otimizações finais após o tratamento do v́ıdeo por completo;

• synthetic pipeline.py : contém a classe SyntheticPipieline, classe filha de VideoPipie-

line. Essa classe permite, em suma, a substituição do algoritmo KLT pela criação

de câmeras e cenas sintéticas, de forma que as etapas da reconstrução possam ser

validadas e exploradas sem a necessidade de um v́ıdeo real junto às dificuldades

associadas ao pipeline completo;

• config.py : contém a definição de todos os itens do arquivo de configurações e seus

respectivos tipos. Também contém funções para a análise do arquivo de configurações

e conversão para a estrutura de dados usada internamente;

• video algorithms.py : contém todos os algoritmos relacionados diretamente ao trata-

mento do v́ıdeo e extração de informações como o algoritmo KLT e de junção de

conjuntos de pontos de interesse distintos;

• reconstruction algorithms.py : contém os algoritmos responsáveis pela reconstrução da

cena e trajetória a partir dos pontos de interesse 2D detectados. Dentre os algoritmos

estão o algoritmo de 5 pontos, as variações do algoritmo solvePnP e o algoritmo de

triangulação e de reprojeção;

• init agorithms.py : neste arquivo está implementada a rotina utilizada para iniciar a

reconstrução utilizando os algoritmos descritos acima;

• bundle adjusment.py : contém as funções relacionadas ao Bundle Adjustment, como

estruturação dos dados antes e depois da otimização, funções de apoio à otimização

e a própria função que realiza a otimização;

• utils.py : contém funções diversas que auxiliam no desenvolvimento nas demais partes

do código.

Podemos notar pela lista acima que, apesar do Python ser uma linguagem orientada

a objetos, há um baixo número de classes novas, sendo a maior parte do código imple-

mentada sob a forma de funções. Essa estrutura foi consequência do ponderamento das

práticas adotadas no projeto (descritas abaixo) com o objetivo de melhorar as métricas de

performance do pipeline, diminuir a incidência de erros de programação e permitir que

futuras modificações no código e sua compreensão sejam facilitas.

49

4.3 Bibliotecas utilizadas

Nessa seção são abordadas e explicadas algumas das bibliotecas utilizadas durante

o desenvolvimento com o intuito de familiarizar o leitor com as ferramentas dispońıveis no

ecossistema de desenvolvimento em Python e mostrar como as suas utilizações contribúıram

para o desenvolvimento do projeto.

• opencv : possivelmente umas das mais conhecidas bibliotecas de tratamento de

imagem. Sua escolha foi devido à extensa documentação dispońıvel online, por

ser implementada em C++ e portanto apresentar uma performance aceitável e

também pelo fato de que está dispońıvel para uso tanto em Python quanto em

C++, facilitando assim uma futura portabilidade do pipeline para outras linguagens.

Uma restrição importante à sua utilização, porém, é a dificuldade no processo de

instalação, que muitas vezes envolve a compilação a partir do código fonte não só

da própria biblioteca, como também de diversas dependências. Porém, uma vez

devidamente instalada sua utilização é fácil.

• numpy : como dependência do opencv e ótima ferramenta para operações com matrizes,

estruturas de dados multi-dimensionais e computação numérica, temos a biblioteca

numpy. Seu uso, assim como o da biblioteca anterior é amplamente difundido, com

uma documentação extensa e uma comunidade bastante ativa. Também implementada

em C++ e compilada para ser utilizada em Python, essa biblioteca apresenta ganhos

de performance consideráveis quando comparada com uma implementação puramente

em Python.

• scipy : definida como um conjunto de bibliotecas (dentre elas numpy e pandas) para

o ramo da matemática, ciência e engenharia, essa biblioteca disponibiliza diversas

ferramentas para tratamento de dados. No contexto desse projeto foi utilizada na

etapa de otimização do Bundle Adjustment.

• pandas : utilizada nesse projeto para o tratamento dos dados oriundos da execução,

pandas é também uma biblioteca bastante difundida e utilizada por conta de sua

performance e flexibilidade.

50

• itertools : apesar de não ser uma biblioteca externa, vale ressaltar o módulo itertoos

por conta do papel que tomou nas etapas de simplificação e otimização do código.

Esse módulo permite a escrita de código mais leǵıvel e “pythonico” de forma que

construções mais complexas de laços fossem substitúıdas, o que diminuiu a incidência

de certos tipos de erros de programação e aumentou a velocidade da implementação

de funcionalidades novas.

• ruamel.yaml : como descrito abaixo, o formato de arquivos YAML apresenta diversas

vantagens em relação a outros formatos de arquivos, especialmente quando o usuário

modifica-o manualmente, portanto uma biblioteca adequada é necessária.

• dacite: juntamente com a utilização de ruamel.yaml, essa biblioteca permite a criação

de dataclasses com bastante simplicidade, realizando ao mesmo tempo a verificação

do tipo de dados sendo processados contra o tipo esperado.

• seaborn: por fim, mas ainda importante, temos seabon, uma biblioteca de visualização

de dados bastante flex́ıvel e simples de ser utilizada, que durante o desenvolvimento

do projeto simplificou consideravelmente a geração de gráficos e tornou a análise

visual de dados mais dinâmica.

4.4 Práticas de desenvolvimento

Por fim, estão descritas aqui algumas das práticas adotadas durante o desenvolvi-

mento do projeto. Essas práticas foram adotadas com os seguintes objetivos:

• Diminuir a ocorrência de erros de programação;

• Melhorar a qualidade e organização do código;

• Facilitar e acelerar a introdução de novas funcionalidades;

• Facilitar a manutenção do código;

• Facilitar a utilização do código;

• Melhorar a comunicação entre membros da equipe;

• Facilitar o desenvolvimento em mais de uma pessoa.

51

E as principais práticas adotadas são:

• Utilização de ambiente virtual: permite padronizar o ambiente de desenvolvimento

diminuindo assim problemas que a equipe pode encontrar por conta de versões

diferentes da linguagem ou dependências, por exemplo;

• Controle de versões: através de ferramentas como git e mercurial, o controle de versões

permite um melhor controle sobre as modificações no código e o desenvolvimento

simultâneo por mais de um integrante da equipe;

• Padronização do estilo do código: facilita o desenvolvimento, pois faz com que o

código desenvolvido por cada desenvolvedor seja mais facilmente integrado ao resto

e analisado ou estendido quando necessário. Para auxiliar nessa tarefa a ferramenta

Black foi utilizada, que enforça a utilização do estilo PEP 8, o guia de estilo oficial

de Python;

• Utilização de boa IDE : fornece grande aux́ılio no desenvolvimento indicando posśıveis

erros, facilitando a refatoração do código, utilização do controle de versionamento

entre outras funções. No caso desse projeto a IDE escolhida foi PyCharm desenvolvido

pela JetBrains ;

• Modularidade e reutilização do código: auxilia no desenvolvimento pode diminuir a

complexidade das funções a serem implementadas, diminuir a quantidade de código

escrito e auxilia também na fase de testes, pois permite separar o pipeline em partes

menores e bem definidas para serem testadas individualmente;

• Gerenciamento de configurações centralizado: importante principalmente na utilização

do pipeline, o bom gerenciamento de configurações alerta usuários quando o arquivo

de configurações está formatado incorretamente ou apresenta dados em formatos

não compat́ıveis. Auxilia também durante o desenvolvimento, pois centraliza as

validações das entradas em um único ponto e torna desnecessária a revalidação dos

dados em outros pontos do código;

• Entregas pequenas, periódicas e bem definidas: talvez uma das práticas que mais

contribuiu para o andamento do projeto, ao separar o trabalho a ser realizado foi

posśıvel não só acompanhar o desenvolvimento com a granularidade adequada, como

também seguir fielmente o cronograma proposto.

52

5 Resultados

Os resultados obtidos com o pipeline proposto serão apresentados a seguir. Os testes

realizados foram divididos em, essencialmente, duas etapas. Em um primeiro momento,

os diferentes algoritmos utilizados durante a reconstrução incremental foram testados

utilizando-se um conjunto de dados sintéticos. Isto é, foram gerados pontos tridimensionais,

bem como uma trajetória para a câmera, ambos sendo, portanto, conhecidos. Em seguida,

os pontos foram projetados através das diferentes matrizes da câmera em cada posição

da trajetória. Essas projeções foram, então, colocadas como entrada do pipeline e a

reconstrução obtida foi comparada com os dados originais.

Conforme será detalhado a seguir, essa validação foi realizada de duas maneiras. A

primeira delas usando os dados projetados ideias, com o objetivo de validar o pipeline, uma

vez que nessa situação era necessário recuperar exatamente os dados gerados originalmente.

Em seguida, rúıdo gaussiano branco foi adicionado às projeções para simular de maneira

mais realista as projeções ruidosas dos frames de um v́ıdeo. Nesse caso, foi posśıvel atestar,

em particular, o efeito corretivo do Bundle Adjustment e sua capacidade de fazer a solução

retornar aos valores esperado.

Uma vez feita a validação com esses dados sintéticos, a segunda etapa consistiu

na utilização de diferentes v́ıdeos reais. A performance do pipeline em cada uma dessas

situações foi analisada, bem como o impacto de algumas variações nos parâmetros dos

diversos algoritmos envolvidos na reconstrução. Em especial, o impacto da inicialização

será evidenciado, mostrando de que forma o processo de refinamento proposto auxilia na

melhoria da performance geral da reconstrução.

5.1 Validação do pipeline

Como mencionado anteriormente, antes de aplicar o pipeline a v́ıdeos reais, a

primeira etapa de testes consistiu em uma validação dos diferentes algoritmos utilizados

através do uso de projeções de pontos tridimensionais gerados sinteticamente em posições

e orientações conhecidas. Mais especificamente, foi gerado um paraleleṕıpedo de dimensões

4× 5× 5 com pontos apenas nas faces externas e 25 posições de câmera que realizam um

ćırculo completo em torno desse paraleleṕıpedo, como mostrado na imagem abaixo:

53

Figura 5.1 – Paraleleṕıpedo e trajetória da câmera gerados para validação do pipeline

Como esperado, a versão dos dados sem qualquer fonte de rúıdo é recuperada de

maneira idêntica pelas versões do pipeline sem e com a otimização do Bundle Adjustment,

como pode ser inspecionado visualmente nas imagens abaixo. Isso permite validar, ao

mesmo tempo, dois aspectos importantes do trabalho: em primeiro lugar, a reconstrução

básica funciona como deveria, uma vez que na ausência de rúıdo ela retorna exatamente

o esperado; além disso, o fato do Bundle Adjustment não alterar em nada a solução

nesse cenário, em que o erro de reprojeção é nulo, é um indicativo inicial de seu bom

funcionamento, dado que qualquer otimização é desnecessária.

(a) (b)

Figura 5.2 – Comparação dos resultados do pipeline: sem Bundle Adjustment à esquerda
(a) e com à direita (b). Como esperado, as reconstruções obtidas são idênticas
entre si e com os dados originais.

Por outro lado, assim que algum tipo de rúıdo é introduzido nas projeções dos dados

sintéticos, é posśıvel perceber a deterioração da reconstrução quando feita pelo pipeline

de base sem otimização e, de maneira análoga, a capacidade de correção imposta pelo

Bundle Adjustment. De maneira mais precisa, no caso dos dados sintéticos, são conhecidos

os pontos tridimensionais Xi, bem como as matrizes de projeção Pj. Assim, para alterar

cada ponto i projetado em uma posição de câmera j dado por uij = PjXi, rúıdo branco

gaussiano aditivo (AGWN na sigla em inglês) foi utilizado. Isto é, em cada componente

das projeções foi adicionado o termo gaussiano de média zero e matriz de covariância Σ

diagonal e constante Σ = σI:

unoisy
ij = uij +N (0, σI) (39)

54

No caso dos testes realizados, a variância do erro utilizada foi de σ = 5 pixels. Na

prática, isso significa que cada pixel projetado estará em sua posição original com um

desvio de mais ou menos 10 pixels em aproximadamente 95% dos casos, o que representa

um ńıvel de rúıdo relativamente elevado. Novamente, os resultados do pipeline com e sem

a aplicação do Bundle Adjustment são mostrados na figura a seguir.

(a) (b)

Figura 5.3 – Comparação dos resultados do pipeline quando rúido é adicionado: sem
Bundle Adjustment à esquerda (a) e com à direita (b). O BA é capaz de
recuperar o resultado original.

É posśıvel notar que, no caso do pipeline básico, o rúıdo introduz dificuldades na

recuperação tanto da estrutura tridimensional, que fica deformada, quanto da trajetória da

câmera, que passa a apresentar oscilações inexistentes nos dados originais. Isso é bastante

razoável, uma vez que os algoritmos da reconstrução possuem certa sensibilidade ao rúıdo.

De toda forma, é interessante notar que a estrutura geral dos dados foi recuperada: ainda é

posśıvel entender que o objeto é um paraleleṕıpedo e que a câmera realizou uma trajetória

circular em torno dele.

Por outro lado, nessa situação com rúıdo, o interesse do Bundle Adjustment fica

muito mais evidente. É posśıvel notar que, ao menos visualmente, a solução é praticamente

idêntica aos dados originais apresentados na figura (5.1): o paraleleṕıpedo não apresenta

mais a distorção observada no caso sem BA e a trajetória da câmera volta a ser um ćırculo

sem qualquer desvio como antes.

No caso dos dados sintéticos, é posśıvel analisar cada uma das situações descritas

anteriormente de um ponto de vista quantitativo também, ao se calcular o erro entre a

solução encontrada e os dados originais (o que não é posśıvel em geral para v́ıdeos reais,

uma vez que as posições dos pontos e câmeras não são conhecidos). O gráfico abaixo

apresenta um resumo desses resultados: para cada frame, são comparados os ângulos e as

translações estimados com os dados originais, nos gráficos de cima, bem como os erros

médios dos pontos tridimensionais estimados e da reprojeção desses pontos, nos gráficos

da segunda linha. Devido ao caráter estocástico do rúıdo, cada caso é rodado 200 vezes e

55

a parte hachurada do gráfico representa o desvio padrão dos erros obtidos.

Figura 5.4 – Erros, ao longo dos frames, nas posições dos pontos, na translação e orientação
da câmera e na reprojeção para os dados com e sem rúido e pipelines com e
sem BA. A otimização aproxima a solução do resultado original.

Como havia sido inspecionado visualmente, é posśıvel notar que no caso sem rúıdo,

os pipelines com e sem BA, representados pelas curvas azul e amarela, respectivamente,

garantem a mesma solução sem qualquer tipo de erro: em todos os gráficos as duas curvas

estão sobrepostas e valem zero. Assim que o rúıdo gaussiano é introduzido, é posśıvel notar

um grande crescimento do erro no pipeline sem BA (curva verde), enquanto que a presença

do BA permite uma reconstrução muito mais próxima da original. Como é posśıvel notar

no gráfico do canto inferior esquerdo, o erro de reprojeção médio fica próximo de 5 pixels

no caso com BA, enquanto oscila em torno de 25 quando ele é desligado, o que representa,

portanto, uma redução média do erro de cinco vezes.

Em último lugar, além da validação da qualidade da reconstrução, também foi

analisada a velocidade de processamento do pipeline nesse caso mais simples, com o

objetivo de se estimar o quão distante estaria a performance de um processamento em

tempo real. Para o caso mais simples, sem rúıdo ou qualquer otimização final, o pipeline

é capaz de processar 300 frames por segundo em um processador Intel Core i7-8850H

2.6GHz de 6 núcleos. Evidentemente, essa situação é muito distante de um v́ıdeo real,

56

porém, de toda forma, o fato do pipeline ser bastante eficiente nessa situação simples

mostra que existe a possibilidade de sua performance não ser impeditiva em casos mais

complexos.

5.2 Análise do efeito da otimização e inicialização

Uma vez validados os constituintes básicos do pipeline, uma segunda etapa de testes

foi realizada para se comparar diferente versões posśıveis, dependendo da escolha de alguns

dos componentes. Mais precisamente, em primeiro lugar foi analisada a influência do

momento em que o Bundle Adjustment era aplicado: como mencionado anteriormente, essa

etapa de otimização da reconstrução incremental poderia ser feita apenas quando todos

os frames tivessem sido processados ou ao longo da reconstrução, através de uma janela

deslizante toda vez que um determinado número de frames é processado. Isso porque,

usualmente, a literatura indica o uso da otimização apenas no final do pipeline. Porém, dado

as caracteŕısticas sequenciais de um v́ıdeo, bem como o interesse de eventualmente poder

processá-lo em tempo real, a solução com a janela deslizante parece ser mais adequada.

Dessa forma, foram utilizados 4 configurações diferentes: a primeira, sem qualquer

Bundle Adjustment sendo aplicado; a segunda, com BA apenas no final; a terceira, com

BA sendo aplicado com uma janela deslizante; e a quarta, em que o BA é aplicado tanto

com a janela deslizante, quanto no final do v́ıdeo. Para todos os casos, rúıdo branco

gaussiano foi adicionado nas projeções do mesmo modo que descrito na seção anterior e

com σ = 5. É importante notar que, no caso em que a janela deslizante é utilizada, são

considerados sempre 6 frames anteriores, sendo que a diferença entre eles é variável. Isto

é, utiliza-se sempre o frame atual, um frame para trás, 3 frames para trás, 6 frames pra

trás e assim sucessivamente. O objetivo de uma tal estratégia é aumentar a velocidade

de processamento e diminuir um potencial overfitting. Isso porque o BA otimiza o erro

emṕırico de reprojeção, isto é, a otimização depende dos dados observados. Sendo feito

com os dados parciais, existe a possibilidade da solução convergir para um mı́nimo local

que não corresponde, portanto, à melhor configuração posśıvel.

As figuras abaixo mostram os resultados para cada uma das quatro configurações

descritas anteriormente. Visualmente é posśıvel perceber que todas as versões com BA

((b), (c) e (d)) performam melhor do que a versão básica, o que está de acordo com os

57

resultados apresentados anteriormente.

(a)
(b)

(c) (d)

Figura 5.5 – Diferentes versões do pipeline: (a) sem BA algum, (b) BA apenas no final,
(c) BA com janela deslizante, (d) BA com janela deslizante e no final.

O efeito do momento em que o BA é aplicado pode ser melhor analisado através dos

gráficos de erro que foram introduzidos na seção anterior e que são reproduzidos abaixo.

Figura 5.6 – Comparação das performances com as diferentes configurações do BA.

58

É posśıvel notar que, de maneira geral, a presença do Bundle Adjustment no

final (curvas verde e vermelha) garante os melhores resultados em termos de todas as

métricas de erro, sendo que a versão em que a janela deslizante não é usada fornece os

melhores resultados (curva verde). Isso pode ser interpretado pelo argumento fornecido

anteriormente: a aplicação do BA com dados parciais pode resultar na otimização para

mı́nimos locais, uma vez que nem todos os dados estão dispońıveis. Isso fica ainda mais

evidente quando o BA é realizado apenas com a janela deslizante (curva amarela): mesmo

que o erro de reprojeção médio seja o menor de todos, que é justamente o que é minimizado

pelo algoritmo, as demais métricas de erro são piores até mesmo do que a versão sem

otimização alguma, o que é um forte indicativo de que a solução encontrada caminhou

para um mı́nimo local com boa coerência entre os pontos tridimensionais e as posições da

câmera, mas que não correspondia exatamente aos dados originais.

Esse potencial overfitting causado pela otimização com a janela deslizante fica

bastante evidente quando analisadas a figura abaixo, em que o BA foi utilizado logo no

ińıcio da reconstrução, quando apenas uma das faces do paraleleṕıpedo havia sido vista

pela câmera até então.

(a) (b)

Figura 5.7 – Resultado da otimização ao longo do pipeline para os frames iniciais: visão
frontal à esquerda (a) e superior à direita (b). Os pontos da perspectiva
das câmeras estão coerentes, mas a estrutura global do paraleleṕıpedo fica
deformada.

59

É posśıvel perceber que a otimização produz pontos coerentes para a face do

paraleleṕıpedo que havia sido vista pela câmera até então, como está evidenciado na visão

frontal (da perspectiva das câmeras) do paraleleṕıpedo mostrado à direita: os pontos dessa

face estão razoavelmente dispostos na forma de uma quadrilátero e os demais pontos em

outros planos garantem uma perspectiva natural do objeto tridimensional. Por outro lado,

a visão superior mostrada na figura à esquerda evidencia que os demais pontos estão

completamente deformados e não formam a figura esperada. Como o erro minimizado

pelo BA resulta da reprojeção entre pontos e câmeras dispońıveis, o mı́nimo encontrado

corresponde, visualmente, a uma disposição dos pontos que faça sentido apenas para a

perspectiva das câmeras usadas.

Dada a pequena translação e rotação (e o rúıdo), a informação observada é muito

parecida em todos os frames e, além disso, apresenta baixa qualidade para os pontos das

demais faces. Como consequência, é posśıvel obter um erro de reprojeção baixo para as

câmeras utilizadas e, ao mesmo tempo, uma configuração global que não corresponde

exatamente à estrutura tridimensional existente na realidade.

Além da otimização, outro constituinte crucial do pipeline proposto é a inicialização,

uma vez que, quando realizada de maneira inadequada, pode acarretar na impossibilidade de

realizar qualquer reconstrução que seja minimamente razoável. Para tanto, foram realizados

alguns testes com diferentes números de frames utilizados para refinar a inicialização, como

descrito na seção 3.3.2. Mais precisamente, os gráficos apresentados na figura anterior

utilizam 5 frames para o refinamento e outros 5 para a validação do threshold de erro.

Em seguida, foram realizados testes com o dobro do número de frames tanto para o

refinamento, quanto para a validação, os resultados sendo mostrados nos gráficos a seguir.

É posśıvel notar que, de maneira geral, o ńıvel de erro foi menor em todas as

configurações testadas, o que mostra a utilidade de se realizar uma inicialização mais

robusta. O ponto negativo, entretanto é o aumento da complexidade de cálculo, o que

resulta, necessariamente, em um menor número de frames processados por segundos. Dessa

forma, é posśıvel perceber que existe um compromisso entre a qualidade da reconstrução e

a velocidade do processamento.

60

Figura 5.8 – Comparação das performances com as diferentes configurações do BA, 10
frames utilizados na inicialização.

Além disso, os testes realizados mostraram que existe uma influência da aplicação do

Bundle Adjustment com a janela deslizante na performance da inicialização. Basicamente,

a presença de uma otimização ao longo do processo permite que o threshold de erro

considerado durante o refinamento seja atingido mais rápido, como é mostrado no gráfico

abaixo, o que faz com que o número médio de frames descartados seja muito mais baixo.

Figura 5.9 – Comparação do número de frames descartados na inicialização. O BA com
janela deslizante permite um ińıcio mais rápido.

61

Mais precisamente, enquanto a ausência do BA implicou em média 3 a 6 frames

descartados, de modo geral sua presença permitiu a inicialização diretamente a partir

da primeira tentativa. Como cada inicialização realiza as contas para k + p frames, com

k = p = 10, isso significa que a são realizados 22 processamentos no caso com BA e de

60 a 120 processamentos. Na prática, isso significa que o BA com janela deslizante seria

capaz de aumentar a velocidade de processamento, mesmo utilizando mais frames para o

refinamento da inicialização e, como o número de frames aumenta, o efeito potencial do

overfitting discutido anteriormente pode ser suavizado, mesmo que ele ainda possa estar

presente.

A partir desses testes, foi posśıvel então selecionar o que foi considerada a melhor

configuração do pipeline proposto antes de aplicá-lo a v́ıdeos reais. Essencialmente, levando-

se em conta o efeito da qualidade da reconstrução obtida, assim como a velocidade

de processamento, a versão que utiliza um maior número de frames para a refinar a

inicialização, associado ao Bundle Adjustment realizado através da janela deslizante foi,

escolhido por fornecer o melhor compromisso entre essas duas métricas de performance.

Como mencionado anteriormente, o maior problema de uma tal estratégia é causar uma

espécie de overfitting e degradar ligeiramente a solução. Entretanto, a presença de mais

frames na inicialização parece tender a compensar esse efeito. Por último, de um ponto de

vista um pouco mais conceitual, essa escolha permite que o pipeline rode teoricamente

em tempo real, uma vez que a realização do BA apenas no final do v́ıdeo implica que ele

seja processado por completo após sua aquisição. Novamente, mesmo que isso não seja um

requisito central do projeto, a possibilidade de adaptá-lo para esse modo de funcionamento

é interessante do ponto de vista de trabalhos futuros.

62

5.3 Vı́deos reais

5.3.1 Vı́deo 1: caixa de macarrão

Uma vez realizados os testes com dados sintéticos, foi posśıvel aplicar o pipeline

proposto a v́ıdeos reais. Os primeiros testes foram realizados com objetos geométricos

simples, como por exemplo uma caixa de macarrão, disposto em um ambiente bem

contrastado, o objetivo sendo facilitar a detecção de boas features com o algoritmo KLT.

Como é posśıvel observar com a sequência de frames a seguir, isso de fato acontece: as

diferentes features seguidas pelo KLT estão marcadas nos diferentes momentos do v́ıdeo

com pontos coloridos e é posśıvel notar que, de fato, existe uma coerência conforme a

sequência de imagens avança.

(a) (b)

(c) (d)

Figura 5.10 – Sequência de frames do v́ıdeo de uma caixa de macarrão e a evolução das
features acompanhadas pelo KLT.

63

É interessante notar que, como esperado, as melhores features encontradas pelo

algoritmo estão nos vértices de letras da caixa, onde há um forte gradiente entre regiões

brancas e azuis, por exemplo. Em seguida, essas features foram alimentadas no algoritmo

de reconstrução, o resultado sendo apresentado abaixo. É posśıvel notar que a solução

encontrada é bastante coerente com o esperado: a câmera realiza uma trajetória de cima da

caixa contornando-a (como é posśıvel perceber pela sequência de frames acima). Além disso,

os pontos tridimensionais reconstrúıdos apresentam a mesma estrutura de paraleleṕıpedo

da caixa, estando em diferentes planos perpendiculares entre si.

Figura 5.11 – Resultado da reconstrução para a sequência de v́ıdeo da caixa de macarrão.

Além da inspeção visual do resultado, que é um pouco mais dif́ıcil de realizar de

modo confiável nesse caso, é posśıvel avaliar quantitativamente sua performance através do

erro de reprojeção, uma vez que basta comparar as posições dos pixels nos frames originais

com os estimados através dos pontos tridimensionais e matrizes de projeção encontradas.

O resultado é apresentado no gráfico abaixo.

Como é posśıvel observar, o erro médio obtido permanece abaixo de 0.6 pixel em

todos os frames. De maneira natural, também é posśıvel observar que esse erro tem uma

tendência de aumento ao longo do tempo. Isso pode ser explicado por um acúmulo de erro

durante a reconstrução, que é inerente ao método sequencial em que ela é feita.

Um segundo teste foi realizado utilizando a mesma caixa de macarrão. No v́ıdeo

mostrado acima, a aquisição foi realizada de maneira suave e cont́ınua, isto é, a câmera

realizou um movimento contornando lentamente a caixa de cima, sem qualquer movimento

brusco ou outro tipo de rúıdo na aquisição. Para testar a robustez do pipeline uma

segunda aquisição foi feita, dessa vez muito mais complexa: a caixa foi filmada por mais

64

Figura 5.12 – Erro de reprojeção obtido com a sequência de v́ıdeo da caixa de macarrão

tempo, com a câmera realizando um movimento aproximadamente circular (iniciando e

terminando aproximadamente no mesmo ponto) e repleto de pausas e interrupções ao

longo da trajetória.

O objetivo principal sendo, portanto, a introdução de diferentes tipos de rúıdos

na aquisição que, em tese, deveriam dificultar a reconstrução. O resultado obtido é

mostrado abaixo: em primeiro lugar, é posśıvel notar que a trajetória mais complexa

de fato é recuperada pelo pipeline e a câmera de fato inicia e termina o seu movimento

aproximadamente no mesmo ponto; além disso, os pontos tridimensionais obtidos também

apresentam a mesma coerência de antes, estando nos diferentes planos como esperado.

Figura 5.13 – Resultado da reconstrução da caixa de macarrão no caso de uma aquisição
ruidosa.

65

É interessante notar que, olhando o erro médio de reprojeção, como esperado, há

um aumento em relação a versão anterior: esse erro chega a superar o ńıvel de 2.5 pixels,

ou seja, praticamente 5 vezes maior do que o v́ıdeo mais simples. De toda forma, tanto do

ponto de vista qualitativo quanto quantitativo o resultado obtido continua aceitável.

Figura 5.14 – Erro de reprojeção no caso de uma aquisição ruidosa: há um aumento
significativo em relação a versão mais simples do v́ıdeo.

5.3.2 Vı́deo 2: estátua de um elefante

Ainda mantendo-se em v́ıdeos de objetos bem contrastados em relação ao fundo, o

segundo tipo de teste realizado foi utilizando objetos mais complexos. Da mesma forma

que uma aquisição mais complexa, o objetivo desse teste era de introduzir dificuldades

na reconstrução. Nesse caso, essa dificuldade é ainda mais representativa, uma vez que

a complexidade do objeto poderia potencialmente deteriorar a qualidade dos pontos

selecionados pelo algoritmo KLT e, como toda a reconstrução se baseia na correspondência

entre esses pontos ao longo dos frames, o impacto poderia ser visto ao longo de todo

pipeline.

Para realizar esse teste, foi utilizada uma estátua de um elefante. Como evidenciado

na sequência de frames abaixo, ela foi filmada de maneira análoga ao v́ıdeo da caixa

de macarrão: a câmera realiza um movimento suave acima do objeto, contornando-o

parcialmente. Além disso, a estátua em si apresenta uma estrutura muito mais complexa

que a caixa de macarrão, uma vez que existem diferentes detalhes e uma região com muitas

texturas e partes vazadas, com certo potencial de dificultar o detector de features do KLT.

66

(a) (b)

(c) (d)

Figura 5.15 – Sequência de frames do v́ıdeo da estátua de um elefante: as features detec-
tadas se concentram, sobretudo, na região com bastante textura.

Naturalmente, a região vazada e com textura recebeu quase que a totalidade das

features detectadas pelo KLT. No entanto, um ponto positivo foi que elas se mantiveram

coerentes ao longo do v́ıdeo, sem que houvesse qualquer tipo de salto ou outra variação

abrupta de um frame para outro, o que poderia acontecer em tal tipo de estrutura.

Realizando a reconstrução em seguida e inspecionando-a visualmente, é posśıvel

concluir que o pipeline foi capaz de produzir um resultado coerente do ponto de vista

qualitativo, como é mostrado na figura abaixo com a sáıda da reconstrução. Isso porque a

trajetória da câmera é claramente recuperada, com as diversas posições acima do objeto,

contornando-o ao longo do v́ıdeo. Além disso, a estrutura 3D parece bastante razoável:

como os pontos detectados são todos pertencentes à região vazada do elefante, é posśıvel

reconhecer o formato arredondado dessa região, bem como a certa simetria presente tanto

nos pontos detectados, quanto na própria estrutura real do elefante.

67

Figura 5.16 – Resultado da reconstrução do pipeline para a estátua de um elefante.

De um ponto de vista quantitativo, é posśıvel analisar o erro de reprojeção mais

uma vez. Como esperado, dada a maior complexidade desse caso, o erro observado é

muito maior do que anteriormente, chegando a 14 pixels nos frames iniciais. Entretanto, a

aplicação do Bundle Adjustment ao longo do v́ıdeo permite que esse erro decresça e volte

para ńıveis aceitáveis do meio para o fim do v́ıdeo. De toda forma, é posśıvel concluir que a

performance foi ligeiramente afetada pelo aumento da complexidade do objeto observado.

Figura 5.17 – Erro de reprojeção do v́ıdeo da estátua de um elefante.

68

5.4 Limitações

Em seguida, depois de realizados os testes em cenas internas, uma segunda categoria

de v́ıdeos foi testada. Nesse caso, foram escolhidas cenas mais amplas e em ambientes

externos e, portanto, com muitos detalhes o que do que nos exemplos anteriores. Como já

mencionado, a estrutura desse tipo de cena introduz uma dificuldade natural ao pipeline

proposto: o fluxo óptico estimado é esparso, isto é, apenas alguns vértices da cena são

seguidos, de modo que uma cena com muitos detalhes potencialmente será composta de

pontos espalhados de maneira não uniforme por todos os objetos presentes, sem que apenas

um único objeto seja completamente caracterizado.

Além disso, cenas externas introduzem outros tipos de dificuldade que, muitas

vezes, não se adéquam às hipóteses de funcionamento dos algoritmos de reconstrução.

A mais senśıvel dessas hipóteses é a necessidade da cena ser estática: isso é claramente

obtido nos v́ıdeos anteriores, em que os objetos detectados não se moviam; entretanto,

no caso de uma cena com vegetação por exemplo, o efeito do movimento das folhas pelo

vento pode acabar deslocando erroneamente as features detectadas. Outros exemplos de

deslocamentos indesejados são introduzidos pela presença de sombras ou reflexos que, caso

detectados pelo algoritmo KLT, introduzem um grande ńıvel de rúıdo nos algoritmos de

reconstrução.

Diferentes testes foram realizados nessa situação. Por exemplo, a área externa de

uma casa foi filmada em um dia ensolarado e todos os elementos dificultadores estavam

presentes no v́ıdeo: sombras que se moviam com a câmera, uma grande quantidade de

vegetação oscilando com o vento e janelas com reflexos de outros objetos da cena. Como

esperado, não foi posśıvel estabelecer uma correspondência robusta entre as features nos

diferentes frames e, consequentemente, a reconstrução se tornou inviável, dado que todos

os algoritmos subsequentes no pipeline são dependentes de que os vértices acompanhados

sejam os mesmos conforme os v́ıdeo avança. Um segundo teste foi realizado com estátuas

e outros elementos, também em uma área externa e, novamente, os mesmos problemas

foram observados.

69

Em todos esses testes, portanto, o pipeline foi incapaz de realizar a reconstrução

da cena. Visualmente, os resultados obtidos mostravam nuvens de pontos e trajetórias de

câmera incoerentes com os v́ıdeos de entrada e, quantitativamente, o erro de reprojeção

observado permaneceu oscilando na ordem de centenas a milhares de pixels. Uma posśıvel

solução a ser investigada seria alguma estratégia para aumentar a robustez das features,

utilizando os métodos descritos anteriormente, como SIFT, aplicados com um espaçamento

entre frames para permitir maiores variações fotométricas. No entanto, os potenciais

movimentos das cenas externas ainda não seriam completamente tratados e, além disso, a

performance em velocidade do pipeline seria potencialmente reduzida, dada a complexidade

desses algoritmos.

70

6 Conclusão

Diante dos resultados expostos nas seções anteriores, foi posśıvel, portanto, estabe-

lecer um pipeline de Structure from Motion capaz de reconstruir a estrutura tridimensional

de uma cena estática, bem como a trajetória da câmera realizada na aquisição da cena,

a partir de uma sequência de frames que compõem um v́ıdeo. Em primeiro lugar, é

importante ressaltar que o seu funcionamento foi validado utilizando-se um conjunto de

dados sintéticos, em que a estrutura 3D era completamente conhecida, bem como a posição

e orientação da câmera em cada um dos frames gerados, de modo que o resultado esperado

da reconstrução era conhecido.

Como mostrado anteriormente, o pipeline não só foi capaz de reconstruir a cena

ideal, isto é, livre de qualquer rúıdo, mas principalmente que as etapas de otimização

adicionadas para corrigir as principais fontes de erro foram bastante efetivas: a versão

com BA é capaz de recuperar a resposta esperada mesmo com a presença de forte rúıdo

gaussiano nas projeções, o que não é o caso do pipeline em sua versão básica sem essa

etapa final. Essa etapa foi fundamental para validar as diferentes etapas da reconstrução e

garantir que os diferentes algoritmos implementados, bem como as diferentes conversões

de sistema de coordenadas e a biblioteca de visualização, estavam corretos e não eram os

responsáveis por eventuais erros que seriam observados em v́ıdeos reais.

Uma vez validada a implementação, foi posśıvel então passar para o tratamento de

v́ıdeos reais. Como mostrado, a qualidade da reconstrução mostrou-se bastante dependente

do tipo de v́ıdeo considerado. Quando a aquisição é feita de forma suave e continua e a

cena é constitúıda de poucos objetos com formas geométricas relativamente simples e bem

definidas, o pipeline apresenta uma boa performance. Isso pode ser explicado pelo fato do

v́ıdeo, nessas condições, estar mais próximo das condições ideias dos dados sintéticos. É

importante destacar que, mesmo com uma inicialização complexa e computacionalmente

exigente, além de estar escrito em uma linguagem naturalmente mais lenta, a velocidade

de processamento obtida é em torno de 26 frames por segundo. Isso mostra que uma

eventual adaptação para uma versão capaz de processar o v́ıdeo em tempo real não está

tão distante, uma vez que, como mencionado anteriormente, ele foi concebido para ser

teoricamente capaz de funcionar dessa forma. Assim, uma possibilidade de trabalho futuro

seria a tradução do código para uma linguagem mais rápida, como C++, bem como o

71

profiling para se entender os gargalos de performance e a paralelização de algumas etapas

que teriam grande potencial de elevar a velocidade do processamento.

Entretanto, é viśıvel a degradação dos resultados nos casos em que os v́ıdeos são

adquiridos de forma menos flúıda (com interrupções e retomadas, elevado tremor ou outros

tipos de rúıdos) ou em que a cena filmada é muita ampla e constitúıda de muitos detalhes.

Esse último problema é inerente ao tipo de reconstrução feita: o algoritmo KLT seleciona

uma quantidade limitada de pontos para acompanhar, resultando em um fluxo óptico

esparso. Assim, em uma cena com diferentes detalhes, o número de pontos acompanhados

não é suficiente para uma boa distinção da estrutura da cena, de modo que a utilização de

um fluxo óptico denso (como uma mapa de profundidade) se mostra mais adequada.

O problema de robustez a v́ıdeos mais ruidosos, entretanto, é mais complexo e

é posśıvel identificar diferentes caminhos que potencialmente poderiam resolvê-lo. Em

primeiro lugar, como observado durante o desenvolvimento, a inicialização das matrizes de

projeção e, sobretudo, da nuvem de pontos 3D apresenta um grande impacto no resultado

final, a ponto de uma inicialização ruim inviabilizar completamente a reconstrução, mesmo

com o uso do Bundle Adjustment. Dessa forma, métodos mais complexos do que o

implementado e presentes em trabalhos mais recentes poderiam ser implementados com

um grande potencial de impactarem positivamente no resultado. Além disso, um estudo

mais aprofundado dos diversos parâmetros presentes no pipeline poderia ser realizado,

para se estabelecer diferentes configurações adaptadas a diferentes tipos de v́ıdeos, por

exemplo.

Finalmente, uma outra possibilidade seria a mudança de abordagem. Ao invés de

se basear apenas em informações visuais, como é o caso do problema de SfM, seria posśıvel

utilizar outras informações vindas de sensores como acelerômetros e giroscópios. Nesse caso,

seria posśıvel estimar a dinâmica completa da câmera, em uma abordagem conhecida como

Monocular SLAM. Trabalhos mais recentes, inclusive, utilizam modelos probabiĺısticos

para estimar a evolução da câmera ao longo do tempo, sendo capazes de captar e tratar as

incertezas inerentes ao problema de maneira mais eficiente e robusta. Dessa forma, passar

para abordagens desse tipo possui potencial de um grande salto de performance, com a

desvantagem de consistir em modelos mais complexos de serem implementados.

72

Referências

BAY, H.; TUYTELAARS, T.; GOOL, L. V. Surf: Speeded up robust features. In:
SPRINGER. European conference on computer vision. [S.l.], 2006. p. 404–417. 17

BEARDSLEY, P.; TORR, P.; ZISSERMAN, A. 3d model acquisition from extended
image sequences. In: SPRINGER. European conference on computer vision. [S.l.], 1996. p.
683–695. 22

BIANCO, S.; CIOCCA, G.; MARELLI, D. Evaluating the performance of structure from
motion pipelines. Journal of Imaging, Multidisciplinary Digital Publishing Institute, v. 4,
n. 8, p. 98, 2018. 7, 11

BOUGUET, J.-Y. et al. Pyramidal implementation of the affine lucas kanade feature
tracker description of the algorithm. 30, 31

CALONDER, M. et al. Brief: Binary robust independent elementary features. In:
SPRINGER. European conference on computer vision. [S.l.], 2010. p. 778–792. 18

CARLBOM, I.; TERZOPOULOS, D.; HARRIS, K. M. Computer-assisted registration,
segmentation, and 3d reconstruction from images of neuronal tissue sections. IEEE
Transactions on medical imaging, IEEE, v. 13, n. 2, p. 351–362, 1994. 11

COOPER, M. C. Formal Hierarchical Object Models for Fast Template Matching. The
Computer Journal, v. 32, n. 4, p. 351–361, 01 1989. ISSN 0010-4620. Dispońıvel em:
〈https://doi.org/10.1093/comjnl/32.4.351〉. 17

ESCRIVá, P. J. D. M.; MENDONçA, V. G. Building Computer Vision Projects with
OpenCV 4 and C++: Implement Complex Computer Vision Algorithms and Explore
Deep Learning and Face Detection. [S.l.]: Packet, 2019. 31

FAUGERAS, O.; FAUGERAS, O. A. Three-dimensional computer vision: a geometric
viewpoint. [S.l.: s.n.], 1993. 35

FITZGIBBON, A. W.; ZISSERMAN, A. Automatic camera recovery for closed or open
image sequences. In: SPRINGER. European conference on computer vision. [S.l.], 1998. p.
311–326. 20, 22

GAUGLITZ, S.; HÖLLERER, T.; TURK, M. Evaluation of interest point detectors and
feature descriptors for visual tracking. International journal of computer vision, Springer,
v. 94, n. 3, p. 335, 2011. 18

HARTLEY, R.; ZISSERMAN, A. Multiple view geometry in computer vision. [S.l.]:
Cambridge university press, 2003. 12, 14, 36, 37

HARTLEY, R. I. Estimation of relative camera positions for uncalibrated cameras. In:
SPRINGER. European conference on computer vision. [S.l.], 1992. p. 579–587. 20

HARTLEY, R. I. In defense of the eight-point algorithm. IEEE Transactions on pattern
analysis and machine intelligence, IEEE, v. 19, n. 6, p. 580–593, 1997. 14, 19

JAVERNICK, L.; BRASINGTON, J.; CARUSO, B. Modeling the topography of shallow
braided rivers using structure-from-motion photogrammetry. Geomorphology, Elsevier,
v. 213, p. 166–182, 2014. 11

https://doi.org/10.1093/comjnl/32.4.351

73

KARAMI, E.; PRASAD, S.; SHEHATA, M. Image matching using sift, surf, brief and orb:
performance comparison for distorted images. arXiv preprint arXiv:1710.02726, 2017. 13

KLEIN, G.; MURRAY, D. Parallel tracking and mapping for small ar workspaces. In:
IEEE. 2007 6th IEEE and ACM international symposium on mixed and augmented
reality. [S.l.], 2007. p. 225–234. 22

KROEGER, T.; GOOL, L. V. Video registration to sfm models. In: SPRINGER.
European Conference on Computer Vision. [S.l.], 2014. p. 1–16. 11

LEONARD, S. et al. Image-based navigation for functional endoscopic sinus surgery
using structure from motion. In: INTERNATIONAL SOCIETY FOR OPTICS AND
PHOTONICS. Medical Imaging 2016: Image Processing. [S.l.], 2016. v. 9784, p. 97840V.
11

LEPETIT, V.; MORENO-NOGUER, F.; FUA, P. Epnp: An accurate o (n) solution to
the pnp problem. International journal of computer vision, Springer, v. 81, n. 2, p. 155,
2009. 39

LONGUET-HIGGINS, H. C. A computer algorithm for reconstructing a scene from two
projections. Nature, Springer, v. 293, n. 5828, p. 133–135, 1981. 13, 14, 19

LOWE, D. G. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, Springer, v. 60, n. 2, p. 91–110, 2004. 13, 16

LUCAS, B. D.; KANADE, T. et al. An iterative image registration technique with an
application to stereo vision. Vancouver, British Columbia, 1981. 13, 18

MANCINI, F. et al. Using unmanned aerial vehicles (uav) for high-resolution
reconstruction of topography: The structure from motion approach on coastal
environments. Remote Sensing, Multidisciplinary Digital Publishing Institute, v. 5, n. 12,
p. 6880–6898, 2013. 11

MORÉ, J. J. The levenberg-marquardt algorithm: implementation and theory. In:
Numerical analysis. [S.l.]: Springer, 1978. p. 105–116. 41, 42

NEWCOMBE, R. A.; DAVISON, A. J. Live dense reconstruction with a single moving
camera. In: IEEE. 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. [S.l.], 2010. p. 1498–1505. 22

NISTÉR, D. An efficient solution to the five-point relative pose problem. IEEE
transactions on pattern analysis and machine intelligence, IEEE, v. 26, n. 6, p. 756–770,
2004. 14, 20, 34, 35, 36

PIZZOLI, M.; FORSTER, C.; SCARAMUZZA, D. Remode: Probabilistic, monocular
dense reconstruction in real time. In: IEEE. 2014 IEEE International Conference on
Robotics and Automation (ICRA). [S.l.], 2014. p. 2609–2616. 23

QUAN, H.; WU, M. A real-time sfm method in augmented reality. In: SPRINGER.
Proceedings of the 2012 International Conference on Information Technology and
Software Engineering. [S.l.], 2013. p. 841–848. 11

74

REMONDINO, F. Heritage recording and 3d modeling with photogrammetry and 3d
scanning. Remote sensing, Molecular Diversity Preservation International, v. 3, n. 6, p.
1104–1138, 2011. 11

RESCH, B. et al. Scalable structure from motion for densely sampled videos. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.:
s.n.], 2015. p. 3936–3944. 23

RONCELLA, R.; RE, C.; FORLANI, G. Performance evaluation of a structure and
motion strategy in architecture and cultural heritage. Int. Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences, v. 38, n. 5/W16, p. 285–292, 2011. 11

ROSTEN, E.; DRUMMOND, T. Machine learning for high-speed corner detection. In:
SPRINGER. European conference on computer vision. [S.l.], 2006. p. 430–443. 17

RUBLEE, E. et al. Orb: An efficient alternative to sift or surf. In: IEEE. 2011 International
conference on computer vision. [S.l.], 2011. p. 2564–2571. 18

SHI, J. et al. Good features to track. In: IEEE. 1994 Proceedings of IEEE conference on
computer vision and pattern recognition. [S.l.], 1994. p. 593–600. 18

SNAVELY, N.; SEITZ, S. M.; SZELISKI, R. Modeling the world from internet photo
collections. International journal of computer vision, Springer, v. 80, n. 2, p. 189–210,
2008. 7, 13, 15

STEWÉNIUS, H. et al. A minimal solution for relative pose with unknown focal length.
Image and Vision Computing, Elsevier, v. 26, n. 7, p. 871–877, 2008. 20

STURM, P.; TRIGGS, B. A factorization based algorithm for multi-image projective
structure and motion. In: SPRINGER. European conference on computer vision. [S.l.],
1996. p. 709–720. 21

TOMASI, C.; KANADE, T. Detection and tracking of point features. School of Computer
Science, Carnegie Mellon Univ. Pittsburgh, 1991. 13, 18

TOMASI, C.; KANADE, T. Shape and motion from image streams under orthography: a
factorization method. International journal of computer vision, Springer, v. 9, n. 2, p.
137–154, 1992. 21, 22

TORR, P. H.; MURRAY, D. W. The development and comparison of robust methods for
estimating the fundamental matrix. International journal of computer vision, Springer,
v. 24, n. 3, p. 271–300, 1997. 19

TRIGGS, B. et al. Bundle adjustment—a modern synthesis. In: SPRINGER. International
workshop on vision algorithms. [S.l.], 1999. p. 298–372. 21

TUYTELAARS, T.; MIKOLAJCZYK, K. et al. Local invariant feature detectors: a
survey. Foundations and trends R© in computer graphics and vision, Now Publishers, Inc.,
v. 3, n. 3, p. 177–280, 2008. 16

ZHANG, Z. A flexible new technique for camera calibration. IEEE Transactions on
pattern analysis and machine intelligence, IEEE, v. 22, n. 11, p. 1330–1334, 2000. 45

	Folha de rosto
	Folha de aprovação
	Agradecimentos
	Resumo
	Abstract
	Lista de figuras
	Sumário
	Introdução
	Estado da arte
	Feature Extraction, Matching e Tracking
	Estimativa do movimento da câmera
	Reconstrução 3D
	SfM a partir de vídeo

	Pipeline proposto
	Visão geral
	Algoritmo KLT e feature tracking
	Descrição teórica
	Implementação piramidal
	Gerenciamento das features
	Etapa de feature tracking resultante

	Structure from Motion incremental
	Inicialização
	Refinamento da inicialização e incorporação de novos frames
	Bundle Adjustment
	Etapa de reconstrução incremental resultante

	Processamento dos dados
	Calibração da câmera
	Visualização

	Implementação
	Execução
	Estrutura do código
	Bibliotecas utilizadas
	Práticas de desenvolvimento

	Resultados
	Validação do pipeline
	Análise do efeito da otimização e inicialização
	Vídeos reais
	Vídeo 1: caixa de macarrão
	Vídeo 2: estátua de um elefante

	Limitações

	Conclusão
	Referências

