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Resumo

O presente trabalho visa abordar o problema de visao computacional conhecido como
Structure from Motion em que, essencialmente, busca-se reconstruir, a partir de imagens
de uma cena estatica adquiridas em posicoes distintas, tanto o modelo tridimensional
dessa cena, quanto a trajetéria da camera responsavel por registrar as imagens. Além
disso, no caso especifico desse trabalho, as imagens adquiridas sao provenientes de uma
sequencia de video registrada continuamente, o que introduz particularidades em seu
tratamento. Esse tipo de problema possui interesse em diferentes areas do conhecimento,
sendo parte constituinte de aplicacoes cujo escopo vao de imagens médicas a realidade
virtual e aumentada. Dada a vasta literatura e diferentes abordagens possiveis para o tema,
a primeira etapa do projeto consistiu em um estudo tedrico dos diferentes algoritmos que
tipicamente constituem um pipeline de Structure from Motion. Em seguida, a partindo-se
dos algoritmos melhor adaptados as particularidades do processamento de um video, a
segunda etapa do projeto consistiu na proposicao de pipeline proprio. Por ultimo, a terceira
e ultima etapa do projeto foi a validacao do pipeline proposto utilizando-se tanto dados
sintéticos quanto videos reais em diferentes situacoes, de modo a se determinar os pontos
fortes e as eventuais limitacoes da proposta. Dessa forma, esse texto discorre tanto sobre
os aspectos tedricos de cada algoritmo utilizado, como também sobre aspectos praticos de
implementacao e que foram levados em conta em cada uma dessas etapas da elaboracao

da solucao para o problema proposto.

Palavras-chaves: Structure from motion. Reconstrugao 3D. Processamento de videos.



Abstract

The present work aims to address the computer vision problem known as Structure from
Motion in which, essentially, it is necessary to reconstruct, from images of a static scene
acquired in different positions, both the three-dimensional model of this scene, as well
as the trajectory of the camera responsible for registering the images. In addition, in
the specific case of this work, the acquired images come from a continuously recorded
video sequence, which introduces particularities in their treatment. This type of problem
has an interest in different areas of knowledge, being a constituent part of applications
whose scope ranges from medical images to virtual and augmented reality. Given the vast
literature and different possible approaches to the theme, the first stage of the project
consisted of a theoretical study of the different algorithms that are typically used in a
Structure from Motion pipeline. Then, based on the algorithms that are best adapted to
the video processing difficulties, the second stage of the project consisted of the proposition
of a new pipeline. Finally, the third and final stage of the project was the validation of the
proposed pipeline using both synthetic data and real videos acquired in different situations,
in order to determine the strengths and possible limitations of the proposed method. Thus,
this text discusses both the theoretical aspects of each algorithm used, as well as practical
aspects of implementation, which were taken into account in each of these steps followed

when solving the proposed problem.

Key-words: Structure from motion. 3D Reconstruction. Video processing.
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1 Introducao

Structure from Motion representa uma classe de problemas em que se deseja
recuperar as informagoes da estrutura geométrica tridimensional de uma cena estatica, a
partir de um conjunto de imagens bidimensionais, utilizando essencialmente informagoes
sobre a estimativa do movimento da camera entre as imagens, como representado no

esquema da figura (1.1).

Figura 1.1 — Exemplo de reconstrucao 3D e estimativa do movimento da camera a partir
de imagens 2D, retirado de (BIANCO; CIOCCA; MARELLI, 2018).

Esse tipo de problema tem historicamente despertado interesse em trabalhos de
visao computacional, uma vez que possui diversas aplicacoes: preservacao e digitalizacao de
patriménio cultural (REMONDINO, 2011; RONCELLA; RE; FORLANI, 2011), como a
criacao de modelos 3D de construcoes historicas e pecas de museus; geociéncias e topografia
(MANCINT et al., 2013; JAVERNICK; BRASINGTON; CARUSO, 2014), com a criacdo
de modelos digitais detalhados de relevos; realidade virtual e aumentada (QUAN; WU,
2013; KROEGER; GOOL, 2014); e aplica¢oes médicas (CARLBOM; TERZOPOULOS;
HARRIS, 1994; LEONARD et al., 2016), através da reconstrugao de volumes 3D de tecidos
e 6rgaos humanos, utilizados durante o diagnéstico ou em intervengoes cirurgicas.

Essencialmente, o problema de SfM é resolvido através de um pipeline bésico
de, pelo menos, 3 etapas: extragdo de caracteristicas importantes das imagens (feature
extraction), especialmente pontos, linhas e outras estruturas geométricas, assim como a
realizagao da correspondéncia dessas caracteristicas entre as diferentes imagens (feature
matching); estimativa do movimento da camera, a partir da evolugao das caracteristicas
escolhidas entre as imagens; e, finalmente, a reconstrucao da estrutura 3D da cena, usando

as informagoes das etapas anteriores, como resumido no diagrama da figura (1.2).
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20 images of the Feature extradmn Camera motion D reconsirucion 0 pmnt cloud
seene Feature matchlng estimation Camera motion

Figura 1.2 — Pipeline bésico de SfM.

De maneira mais formal, seguindo o que é feito por exemplo em (HARTLEY;
ZISSERMAN, 2003), o problema de Structure from Motion pode ser definido da seguinte
forma: dado um conjunto de k pontos bidimensionais uy,us, ..., u; projetados em m
imagens, o objetivo é encontrar as m matrizes de projecao Py, ..., P,,, bem como os n
pontos tridimensionais originais Xy, ..., X,, que compoem a estrutura da cena.

Usando a notacdo de coordenadas homogéneas ! é possivel relacionar um ponto 3D
X ~ [X Y Z 1] com seu pixel correspondente projetado =[x y 1]" através da
matriz de projecao P:

it ~ PX (1)

em que a matriz de projecao P € R3*4, usando o modelo de camera pinhole, é definida,
pela igualdade a menos de escala P ~ K[R | t], em que K é a chamada matriz de
parametros intrinsecos da camera ou matriz de calibracao, uma vez que esta relacionada
com parametros como distancia focal e distorcao introduzida pela camera; R € R3%3 ¢
a matriz de rotacdo, que representa a orientacao da camera, e t € R3*! ¢é o vetor de
translacao, que representa a posicao da camera. As matrizes de rotagao e translagao
juntas formam os chamados parametros extrinsecos e descrevem o posicionamento da
camera no espaco tridimensional. Para uma explicacao mais detalhada, é possivel consultar
(HARTLEY; ZISSERMAN, 2003).

Como mencionado anteriormente, o problema de SfM é resolvido, entao, em 3
etapas essenciais. A primeira delas é extragdo de caracteristicas das imagens e a realizacao
da correspondéncia dessas caracteristicas entre duas imagens distintas, como mostrado na
figura (1.3). Isso porque, como serd explicitado posteriormente, através de um conjunto de
imagens obtidas em posicoes diferentes, com projecoes de um mesmo ponto do espaco, é

possivel recuperar nao so as matrizes de rotacao e translagao que levam a camera de uma

posicao de aquisi¢cao a outra, mas também as coordenadas desse ponto.

Se x € R™, em coordenadas homogéneas x € R"*!, sendo o ltimo elemento um fator de escala. Assim,
se X = [71 72 w]", entdo x = [ /w 72/w]" e a igualdade a menos do fator de escala w é escrita
X ~ [1‘1 o l]T
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Figura 1.3 — Exemplo de correspondéncia entre pontos de duas imagens, retirado de
(SNAVELY; SEITZ; SZELISKI, 2008).

Existem intimeros algoritmos na literatura que sao capazes de detectar e realizar
correspondéncias entre pontos de diferentes imagens (KARAMI; PRASAD; SHEHATA,
2017). Um algoritmo que é comumente aplicado é o chamado Scale Invariant Feature
Transform (SIFT) (LOWE, 2004), responsavel por encontrar caracteristicas locais que
sao invariantes a escala e a rotagoes. Entretanto, mesmo possuindo boa performance, esse
algoritmo, assim como outros derivados, ¢ computacionalmente exigente e seu uso pode se
tornar impeditivo em aplicagoes que devam funcionar em tempo real ou que precisem tratar
um volume grande de imagens, como € o caso de um conjunto de frames que constituem um
video. Por isso, é interessante considerar uma outra classe de algoritmos de correspondéncia
que possuem complexidade computacional mais baixa. Uma solugao apresentada foram
algoritmos baseados em fluxo 6ptico, sendo o mais comum deles conhecido como Kanade-
Lucas-Tomasi feature tracker (KLT) (LUCAS; KANADE et al., 1981; TOMASI; KANADE,
1991).

Tendo sido realizada a correspondéncia entre pontos de imagens distintas, a segunda
etapa do pipeline consiste em recuperar as matrizes de projecao que, como mencionado,
possuem informagoes sobre a orientagao (rotagdo) e posicionamento (transla¢ao) das
cameras. Isso é feito através usando a chamada matriz essencial E que relaciona duas
cameras C e C' de matrizes de projegdo P e P’| respectivamente (LONGUET-HIGGINS,
1981).

De maneira resumida, um ponto X’ capturado por C’ serd descrito em C por
x=Rx'+t (2)
de modo que multiplicando a equagao pela direita por x'[t]. obtem-se:

%'[t]xRX =% 'EX' =0 (3)
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em que E ~ [t|xR é a matriz essencial, que introduz uma restri¢ao algébrica, cuja
interpretagao geométrica esta relacionado com o fato de que as proje¢oes de um mesmo
ponto devem estar na mesma linha epipolar.

Na pratica, nés temos acesso as projecoes modificadas pelos parametros intrisecos
da camera u ~ Kx, de modo que a equagao 3 normalmente é reescrita em termos da

matriz fundamental F ~ (K1) TEK'™!
i Fi' =0 (4)

sendo que F € R?**3, com posto igual a 2. Dessa forma, dado um par de imagens e pelo
menos 8 pontos que se correspondem em cada uma das imagens, em teoria ¢ possivel
estimar a matriz fundamental de maneira linear (LONGUET-HIGGINS, 1981). Estimada
F e conhecida as matrizes de calibragem K é possivel realizar as transformacgoes inversas:
E~K'"FK e E = [t]«R, de modo a se recuperar as matrizes de rotagao R e translacio
t e, portanto, as matrizes de projecao P ~ K[R | t| e P’ ~ K'[R | t]

Desde a solugao ao problema acima, conhecida como algoritmo de 8 pontos e
introduzido em (LONGUET-HIGGINS, 1981), uma extensa literatura foi produzida para
obter melhores estimativas do movimento das cameras através de melhoras na estimacao da
matriz essencial. Inicialmente, isso foi feito melhorando-se o algoritmo de 8 pontos original,
como a versao normalizada apresentada em (HARTLEY, 1997), mas depois utilizando-se
cada vez menos pontos, até a versao otimizada com apenas 5 proposta em (NISTER,
2004).

Tendo as matrizes de projecao estimadas, a tltima etapa essencial para o pipeline é
a reconstrucao da estrutura 3D da cena, o que é feito em um processo conhecido como
triangulacao. Em teoria, tendo-se 2 vistas de um ponto X no espaco, ele deveria estar na
interseccao dos raios reprojetados a partir de u e u’, o que pode ser feito utilizando a matriz
pseudo-inversa de P e P’ respectivamente, como descrito em (HARTLEY; ZISSERMAN;
2003). Contudo, devido a presenca de ruido nas imagens, de maneira geral esses raios
reprojetados nao se interceptam, de modo que, em geral, os pontos 3D sao recuperados

minimizando-se uma métrica apropriada, como por exemplo, o erro empirico de reprojegao

X" =arg m)éng:ﬁi(uiaui(PiaX» (5)

em que u; é o pixel observado, 1; é o pixel estimado e a somatéria é feita nas ¢ imagens

que contem o ponto X. Assumindo que o ruido presente na imagem é Gaussiano e
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branco, a escolha da métrica como sendo a norma Ly entre os pixels estimado e observado
L; = ||u; — 0;(P;, X)|[3 implica que X* é o estimador de méxima verossimilhanga do ponto
real.

O resultado final dessas 3 etapas deve ser, portanto, uma nuvem de pontos no
espago 3D, bem como as diferentes posicoes e orientacoes das cameras que geraram as

imagens 2D, como representado na figura (1.4).

Figura 1.4 — Resultado de um pipeline de SfM, retirado de (SNAVELY; SEITZ; SZELISKI,
2008).

Esse trabalho de conclusao de curso se insere, dessa forma, nesse contexto. O
nosso objetivo é estabelecer um pipeline de SfM capaz de receber uma sequéncia de video
de uma cena estatica e reconstruir uma nuvem de pontos 3D, bem como as estimar a
trajetéria da camera. Para tanto, serao implementadas as diferentes etapas apresentadas
anteriormente, levando-se em conta as particularidades impostas pelo tratamento sequencial
dos frames de um video. Nas se¢Oes que seguem, uma revisao bibliografica com os principais
desenvolvimentos no tema sera apresentada. Partindo-se dela, o pipeline desenvolvido sera

detalhado e os resultados obtidos serao analisados e discutidos.
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2 Estado da arte

Nessa secao os avangos mais recentes na resolucao do problema de reconstrucao da
estrutura 3D de uma cena estatica a partir do movimento da camera serao apresentados.
Para tanto, em primeiro lugar, as técnicas gerais mais recentes das diferentes etapas do
pipeline geral serao apresentadas e, em seguida, os principais avangos para a resolucao do
problema quando restrito ao caso especifico em que as entradas representam frames de
um video.

E importante explicitar que, como em muitas outras tarefas de visao computaci-
onal, os trabalhos mais recentes na area utilizam técnicas de aprendizado de maquina
e, em especial, de aprendizagem profunda e redes neurais. Mesmo que essas abordagens
apresentem resultados promissores, elas fogem do escopo desse trabalho e, portanto, nao

serao discutidas nessa sec¢ao.

2.1 Feature Extraction, Matching e Tracking

A extracao automética de caracteristicas de interesse em uma cena (feature ex-
traction), bem como a realizagdo da correspondéncia dessas caracteristicas entre imagens
distintas dessa cena, obtidas de diferentes pontos de vista (feature matching), sdo etapas
essenciais em varias areas de visao computacional e, portanto, possuem uma vasta litera-
tura prépria. Assim, apenas alguns dos principais métodos serao apresentados, enquanto
uma revisao extensiva pode ser encontrada em (TUYTELAARS; MIKOLAJCZYK et al.,
2008).

Um primeiro algoritmo de extragao de caracteristicas que recebeu bastante atencao
¢ conhecido como Scale Invariant Feature Transform (SIFT), apresentado em (LOWE,
2004). De modo geral, esse algoritmo busca encontrar caracteristicas que sdo invariantes a
rotagoes e escala, além de parcialmente invariantes a diferenca de luminosidade e mudanca
de ponto de vista da aquisicao. Para tanto, existem 4 passos fundamentais na criacao
das caracteristicas SIF'T: em primeiro lugar, possiveis pontos de interesse sao obtidos
encontrando-se extremos da representacao no espago de escala da imagem, usando diferenca
de Gaussianas; em segundo lugar, a localizagao, a escala e o ratio das curvaturas principais

sao calculados, de modo a eliminar candidatos com baixo contraste ou mal localizados;
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o terceiro passo consiste em calcular gradientes locais para atribuir uma orientacao aos
pontos candidatos; por ultimo, uma descrigao local de cada um desses pontos ¢é calculada,
utilizando-se informacoes da magnitude e orientacao do gradiente no entorno. Apesar de
ter sido aplicado com sucesso em diferentes aplicagoes de visao computacional, inclusive em
pipelines de STM, o algoritmo para a extragao de caracteristicas SIFT é computacionalmente
exigente, se tornando impraticavel em aplicagoes em tempo real ou com grande volume de
dados, como videos em que frames de alta resolucao sao amostrados em taxas relativamente
elevadas.

Para tentar solucionar esse problema de eficiéncia computacional, diferentes algo-
ritmos foram propostos, dos quais recebeu bastante atencao o conhecido como Speed Up
Robust Features (SURF), proposto em (BAY; TUYTELAARS; GOOL, 2006). Esse algo-
ritmo ¢é inspirado nas ideias utilizadas nas caracteristicas SIFT, porém com modificagoes
para acelerar cada uma das diferentes etapas descritas anteriormente. Assim, a diferenca
de Gaussianas é aproximada por filtros quadrados (boz filters) calculados na imagem
integral (COOPER, 1989), que sao mais rapidos e podem ser aplicados paralelamente em
diferentes escalas; além disso, a localizacao e escala dos pontos de interesse é baseada
no determinante da matriz Hessiana e, finalmente, tanto a orientacao quanto o descritor
local sao obtidos usando-se wawvelets nas direcoes horizontal e vertical, que também sao
calculadas de maneira eficiente com a imagem integral.

Uma outra alternativa proposta foi o algoritmo Features from Accelerated Segment
Test (FAST) (ROSTEN; DRUMMOND, 2006), que buscava obter um aumento de per-
formance em velocidade grande o suficiente para aplicagoes em tempo real ou com poder
computacional limitado. Diferente em natureza do SIFT e SURF, o algoritmo FAST possui
essencialmente 2 etapas: em primeiro lugar, possiveis pontos de interesse sao encontrados
aplicando-se um threshold a uma vizinhanca de cada pixel da imagem e comparando a
intensidade luminosa desses pixels adjacentes; em seguida, aprendizado de méaquina é
utilizado para aumentar a robustez dos pontos de interesse selecionados, através do uso de
uma arvore de decisao, seguido de um procedimento de eliminacao de multiplos pontos de
interesse adjacentes. Entretanto, apesar de ser sensivelmente mais rapido, esse algoritmo
nao é tao robusto a presenca de ruido e, além disso, sua performance depende da escolha

do valor do threshold.
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Mais recentemente, o algoritmo Oriented FAST and Rotated BRIEF (ORB) foi
proposto em (RUBLEE et al., 2011), como uma tentativa de se combinar a robustez do
algoritmo SIFT, porém mantendo o ganho de velocidade do algoritmo FAST. Para tanto, os
autores em (RUBLEE et al., 2011) combinaram o detector de pontos de interesse do FAST,
modificado de modo que uma orientacao é atribuida a esses pontos, com uma nova versao
do descritor local chamado Binary Robust Independent Elementary Features (BRIEF),
apresentado originalmente em (CALONDER et al., 2010), para recuperar a invariancia
a rotacao que se observava nos algoritmos SIFT e SURF. Uma analise e comparacao
aprofundadas da performance de alguns desses algoritmos podem ser encontradas em
(GAUGLITZ; HOLLERER; TURK, 2011).

Esses algoritmos citados servem para que pontos de interesse sejam selecionados
em uma imagem de modo que, em seguida, seja possivel realizar a correspondéncia entre
0s mesmos pontos em um par de imagens distintas, que em geral representam grandes
variacoes de posicao e rotagao da camera, o que é chamado de wide-baseline matching.
Porém, no caso de frames de um video, em geral, vale a hipdtese que a vizinhanca dos
pontos de interesse nao variam tanto e é possivel aplicar uma correspondéncia do tipo
narrow-baseline matching. Uma outra categoria de algoritmos desse tipo busca, entao,
encontrar esses pontos de interesse e acompanhar sua evolugao a cada frame utilizando o
que é conhecido como fluxo 6ptico, sendo o Kanade-Lucas-Tomasi (KLT) feature tracker
(LUCAS; KANADE et al., 1981; TOMASI; KANADE, 1991; SHI et al., 1994) o de maior
destaque entre eles.

Originalmente, Lucas e Kanade desenvolveram um algoritmo capaz de alinhar uma
imagem de tamplate com uma imagem de entrada, através de um método de descida
de gradiente responsavel por encontrar o movimento entre uma imagem e outra que
minimiza o erro quadratico entre a imagem tamplate observada e a imagem estimada pelo
deslocamento, sendo possivel assim acompanhar a evolucao dos pixels em cada imagem.
Como o calculo do gradiente envolve a inversao da matriz Hessiana da imagem, é essencial

para a estabilidade do método que ela seja bem-condicionada.
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Partindo dessa observacao, Tomasi e Shi propuseram um método para selecionar
os pontos de interesse a serem acompanhados entre as imagens, levando em conta os
autovalores da matriz Hessiana: quando um, outro ou ambos sao muito maiores do que zero,
isso significa que essa matriz é nao singular e, portanto, inversivel. Mais especificamente,
o algoritmo seleciona pontos tais que os autovalores sejam maiores que um determinado
valor minimo, associado ao ruido presente nas imagens. Dado sua robustez e velocidade,
o algoritmo KLT ganhou grande popularidade e segue apresentando performance de

estado-da-arte.

2.2  Estimativa do movimento da camera

A estimativa da matriz de proje¢ao de uma camera partindo-se de duas imagens
distintas da mesma cena também recebeu grande atengao desde sua introdugao (LONGUET-
HIGGINS, 1981), em que foi proposto o algoritmo de 8 pontos. Basicamente, a tarefa
consiste em se encontrar a matriz fundamental F que satisfaz equacao (4) para quaisquer
par de pontos correspondentes em duas imagens. Como F possui 9 elementos e tem
posto igual a 2, basta utilizar 8 pontos nao-coplanares para formular um sistema linear e
resolvé-lo, de modo a se determinar completamente a matriz.

Entretanto, esse problema s6 pode ser resolvido analiticamente no caso em que nao
hé qualquer tipo de ruido nas imagens ou erro de correspondéncia entre os pontos, o que
nao se observa em imagens reais. Dessa forma, diferentes modificacoes foram propostas
para o algoritmo original. Em (HARTLEY, 1997), Hartley prop6s uma versao normalizada
do algoritmo, que busca uma solucao do tipo minimos quadrados do sistema linear obtido,
levando-se em conta que o problema em geral é mal-condicionado: a matriz do sistema,
teoricamente, deveria possuir apenas um autovalor nulo e todos os outros diferentes de zero;
entretanto, devido a ma-distribuicao das coordenadas homogéneas dos pixels das imagens,
isso em geral nao é verdade. Assim, propos-se uma transformacao de coordenadas para
normalizar as coordenadas dos pontos, de modo a melhorar o condicionamento numérico
da matriz do sistema, obtendo-se assim resultados mais robustos.

Além disso, uma anélise tedrica mais detalhada mostra que o problema pode ser
resolvido com menos do que 8 pontos. Usando diretamente o fato que a matriz do sistema
linear possui um autovalor nulo, um algoritmo usando 7 pontos foi proposto em (TORR;

MURRAY, 1997). Além do interesse tedrico em explorar a estrutura mateméatica do
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problema, o uso de menos pontos na estimacao da matriz fundamental possui interesses
préticos. Em (NISTER, 2004), Nister apresentou uma solucao eficiente de estimagao usando
apenas 5 pontos, utilizada em um pipeline de StM em tempo real, obtendo performance
de estado da arte a época, com resultados mais velozes e robustos do que aqueles obtidos
com algoritmos de 8 e 7 pontos. Entretanto, esse algoritmo exige que as cameras estejam
calibradas, de modo que todos os parametros intrinsecos devem ser conhecidos, o que nao é
o caso para os algoritmos que usam mais pontos. Uma alternativa foi, entao, proposta em
(STEWENIUS et al., 2008), através de um algoritmo que utiliza 6 pontos, mas que relaxa
a condicao sobre os parametros intrinsecos, uma vez que a distancia focal é considerada
desconhecida, de modo a encontrar um compromisso entre a robustez obtida com menos

pontos e a flexibilidade da aplicacao.

2.8  Reconstrucao 3D

A reconstrucao da estrutura 3D da cena consiste em resolver o problema de
otimizacao apresentado pela equagao (5). De maneira geral, quando mais de duas imagens
sao utilizadas, é possivel identificar duas categorias gerais de métodos de empregados:
métodos sequenciais (ou incrementais) e métodos por batch.

Os métodos sequenciais sao 0s mais comuns na literatura e, essencialmente, funcio-
nam através da incorporacao de novas imagens uma a uma, de modo que reconstrucoes
parciais sao feitas e aprimoradas a cada nova imagem adicionada. Diferentes estratégias
podem ser adotadas nesse processo sequencial. Por exemplo, (HARTLEY, 1992) utiliza
a informacao 3D dos pontos ja reconstruidos para estimar o movimento da camera das
novas imagens e continuar a reconstrucao do novos pontos. Outra possibilidade é calcular
duas reconstrucoes distintas, a partir de diferentes pares, e unir as solugoes, através de
pontos 3D em comum, como é feito em (FITZGIBBON; ZISSERMAN, 1998), em que
sequéncias de imagens cada vez mais longas sao reconstruidas de maneira hierarquica.
Entretanto, métodos sequenciais apresentam algumas limitagoes, como a necessidade de
grande superposi¢ao entre imagens, o uso de muitos pontos de interesse e a falta de

robustez a determinados tipos de cenas ou movimentos.



21

A segunda categoria de métodos de reconstrucao é conhecida como reconstrugao por
batch, uma vez que utiliza multiplas imagens simultaneamente para realizar as estimativas
de movimento e estrutura 3D da cena, de modo a diminuir o erro de reconstrucao.
[gualmente, existem diversas formas de realizar esse tipo de reconstruc¢ao: em (TOMASI,;
KANADE, 1992) foi introduzido o chamado método por fatoriza¢do, mas com a limitagao
de um modelo simplificado de camera, que exclui movimentos mais gerais. Alguns trabalhos
tentaram corrigir essa limitagao, como o método apresentado em (STURM; TRIGGS,
1996) que utiliza uma técnica de rebalanceamento das escalas dos pontos das imagens, de
modo a aumentar a robustez da reconstrucao.

Finalmente, a grande maioria dos pipelines de SfM mais recentes utilizam uma
técnica de refinamento da solu¢ao encontrada (tanto movimento da camera, quanto
estrutura 3D) chamada de Bundle Adjustment (BA). De modo geral, BA consiste em
minimizar uma funcao de perda que leva em conta o erro de reprojecao obtido. Dessa forma,
através do uso de algoritmos de otimizagao nao-linear, como por exemplo variacoes do
algoritmo de Gauss-Newton, é possivel refinar a solucao e encontrar matrizes de projecao
e pontos tridimensionais mais adequados. Existe uma extensa literatura com as diferentes
técnicas comumente empregadas para a realizacao desse refinamento e uma revisao bastante

extensa pode ser encontrada em (TRIGGS et al., 1999).

2.4  SfM a partir de video

Grande parte da literatura de SfM se concentra no caso em que as entradas sao
imagens de uma cena obtidas de maneira discreta e espacada. Assim, dado um conjunto
de imagens, cada par formado apresenta chances de possuir muitos pontos em comum, ou
absolutamente nenhum, de modo que, geralmente, é preciso checar todas as combinagoes.
Além disso, existe sempre a possibilidade de que, mesmo para um par onde efetivamente
h& pontos em comum, ocorram potencialmente grandes diferencas fotométricas entre as
imagens, com oclusoes, diferenca de iluminacao, entre outras caracteristicas.

Por outro lado, para o caso de frames de um video, existem algumas particularidades
que precisam ser levadas em conta: similaridade entre as imagens de entrada em frames
adjacentes, a existéncia de uma relacao sequencial entre as entradas, a necessidade de

processar grandes volumes de dados rapidamente, o controle de actimulo de erro, entre
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outras caracteristicas. Assim, uma literatura prépria se desenvolveu para tratar dessa
classe de problema.

Um dos primeiros trabalhos a receber destaque foi (TOMASI; KANADE, 1992),
em que foi introduzido o que os autores chamam de método por fatorizacao, isto é, em
que todas as imagens de um subconjunto (batch) sao utilizadas ao mesmo tempo para
realizar as estimativas de movimento da camera e estrutura 3D, de modo a reduzir o erro
de reconstrugao, que é distribuido por todas as aquisi¢oes. Dessa forma, o método foi um
dos primeiros que se mostraram robusto a presenca de ruido nos frames, de modo a obter
boa performance em sequéncias de imagens reais.

Outro trabalho de destaque é apresentado em (BEARDSLEY; TORR; ZISSERMAN,
1996), em que se buscava recuperar a estrutura 3D de uma cena através de uma longa
sequéncia de imagens obtidas com uma camera cujos parametros sao desconhecidos.
Para tanto, os autores propuseram um método sequencial, que reconstroi a estrutura 3D
iterativamente, usando uma trinca de frames como unidade basica, ao invés de pares, mas
com o mesmo principio de funcionamento: pontos de interesse sao encontrados nas imagens
e a correspondéncia entre eles é realizada usando-se uma estratégia de correlagao cruzada,
assumindo que as mudangas em uma vizinhanga sao essencialmente estaticas; o tensor focal
(no lugar da matriz fundamental) é estimado usando um algoritmo de 6 pontos, associado a
um esquema do tipo RANSAC. De maneira similar, (FITZGIBBON; ZISSERMAN;, 1998)
usa trincas de imagens como ponto de partida para se obter estimativas do movimento da
camera e representa um dos primeiros trabalhos que consideram diferentes tipos de cena:
interior e exterior, filmadas com um movimento controlado ou a mao livre.

Esses trabalhos iniciais buscam uma reconstrucao 3D esparsa, porém trabalhos
mais recentes tentam obter performances em tempo real também para reconstrucao
densa da cena. O método apresentado em (NEWCOMBE; DAVISON, 2010) utiliza um
pipeline de SfM em tempo real introduzido em (KLEIN; MURRAY, 2007), que combina o
acompanhamento de milhares de pontos de interesse por frame com a construcao de um
mapa da cena, responsavel por aumentar a precisao das estimativas de deslocamentos dos
pontos e de movimento da camera, atingindo performance de estado da arte em cenas com
limitacao de profundidade e pouca variagao de caracteristicas. A partir dessas estimacoes
robustas, a reconstrucao densa é obtida entao através da criagao de uma malha com

base na selecao de um conjunto de frames similares que se superpoem. Outro método

de reconstrugao 3D densa é apresentado em (PIZZOLI; FORSTER; SCARAMUZZA,
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2014), que tenta diminuir as limitagdes de profundidade nas cenas de métodos como o
anterior através do uso de métodos probabilisticos bayesianos, obtendo assim uma melhor
performance em diferentes tipos de cena.

Além disso, com a melhora dos sistemas de aquisi¢ao, foram evidenciadas dificuldades
para gerenciar videos com elevadas taxas de frames e com resolugoes cada vez maiores.
O método proposto em (RESCH et al., 2015) busca atender esses requisitos, obtendo
performance robusta para framerates de 25-120Hz e com resolucoes de 2-20 megapixels.
Para tanto, os autores estabelecem um pipeline de SIM que combina o uso do algoritmo KLT
entre frames adjacentes, com caracteristicas SIF'T entre frames espacados da sequéncia,
bem como utilizam métodos de refinamento intermediario e global para produzir uma
estimativa robusta dos movimento e da estrutura.

Finalmente, é importante destacar que, ao longos dos anos e sobretudo mais
recentemente, passou a haver uma interseccao natural entre os trabalhos de SfM a partir
de um video e aqueles de Simultaneous localization and mapping (SLAM), sendo possivel
encontrar trabalhos que tratam de maneira indistinta o problema de SLAM monocular
e o de SfTM em tempo real. Entretanto, como o problema geral de SLAM apresenta por

si s6 uma vasta literatura que foge ligeiramente do escopo desse trabalho, ele nao sera

detalhado.
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3 Pipeline proposto

O pipeline desenvolvido nesse trabalho sera apresentado nas segoes a seguir. Em
primeiro lugar, serao apresentados suas caracteristicas gerais, bem como os objetivos e as
justificativas para cada escolha de design. Em seguida, as etapas essenciais do pipeline serao
detalhadas: o processamento preliminar dos dados e calibragao da camera; o algoritmo
de detecgao de pontos de interesse ao longo dos diferentes frames do video; os diferentes

aspectos da reconstrucao incremental; e, finalmente, a etapa de otimizacao.

3.1 Visao geral

Como mencionado anteriormente, o objetivo desse trabalho consiste em desenvolver
um pipeline que seja capaz de reconstruir a estrutura tridimensional de uma cena estatica,
bem como os movimentos de translacao e rotagao da camera, a partir de uma sequéncia
de frames de um video. O grande interesse de se desenvolver um pipeline desse tipo seria,
futuramente, tentar utiliza-lo em aplicagoes de realidade aumentada, em que a sequéncia
de frames seria capturada por dispositivos como smartphones ou 6culos de realidade
aumentada e, ao mesmo tempo, ela seria processada de forma a produzir para o usuario,
em tempo real, as informagoes de estrutura 3D e movimentos recuperadas pelos algoritmos
implementados. O interesse do trabalho apresentado podera possivelmente se estender,
portanto, para além da construgao do pipeline em si, uma vez que também podera ser
eventualmente empregado como base para que se estabelega uma analise da performance e
limitacoes dessa abordagem e, assim, a viabilidade de sua utilizagao.

Dessa forma, mesmo que esse trabalho seja preliminar e anterior a essas aplicagoes
futuras, possiveis requisitos impostos por elas foram considerados durante o desenvolvi-
mento. Concretamente, buscou-se propor um pipeline que, conceitualmente, fosse capaz
de funcionar em tempo real. Para tanto, nao sé foram escolhidos algoritmos de menor
complexidade computacional nas diferentes etapas do processamento para que se tivesse
um ganho em velocidade, mas principalmente foi necessario garantir que a reconstrucao
da cena pudesse ser feita de maneira sequencial, conforme novos frames fossem sendo
adquiridos pela camera. Por isso, abordagens que implicariam a necessidade de se processar

o video em sua integralidade para seu funcionamento foram descartadas. E importante
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frisar, entretanto, que a implementacao efetiva de uma versao em tempo real foge do
escopo desse trabalho e que apenas foram feitos esforgos para que uma eventual adaptacao
pudesse ser realizada de maneira mais simples.

Portanto, tendo em vista esses objetivos, um pipeline de Structure from Motiom
incremental foi desenvolvido. Cada etapa sera detalhada nas proximas secoes, porém, de
maneira geral, o pipeline pode ser dividido inicialmente em duas etapas principais: feature
tracking, que corresponde a deteccao e ao acompanhamento de pontos de interesse entre
os diferentes frames do video; e reconstrucao incremental, que permite efetivamente
que seja criada sequencialmente uma nuvem de pontos 3D da cena observada, assim como
a trajetoria da camera, com suas mudancas de orientagao e posicao ao longo dos frames, a
partir da evolugao desses pontos de interesse detectados.

Dada a natureza sequencial de um video, com pequenos deslocamentos fotométricos
entre os frames, a etapa de deteccao e acompanhamento dos pontos de interesse foi
realizada através do algoritmo KLT. Essencialmente, a implementacao utiliza o detector
de Shi-Tomasi para encontrar os pontos de interesse no primeiro frame 1til do video
e uma versao do algoritmo de fluxo éptico de Lucas-Kanade, que utiliza representacao
de imagem em piramides, para acompanhéa-los nos frames subsequentes. Além disso, de
modo a ser possivel tratar videos com duracao arbitraria, conforme as features seguidas
vao sumindo da cena, também foi proposta uma forma de reinicializa-las, de modo a
se adicionar outras e, ao mesmo tempo, manter a coeréncia ao longo de todo video. Os
detalhes serao explicitados nas secoes a seguir.

Uma vez detectados pontos de interesse nos diferentes frames, é possivel realizar
a reconstrucao dos pontos 3D e da trajetéria da camera. Tendo em vista os objetivos
desse trabalho, optou-se pelo que é conhecido como reconstrucao incremental. Nesse tipo
de abordagem, a partir de dois frames que sejam considerados bons, é preciso inicializar
a nuvem de pontos e as posi¢oes da camera. Isso é feito utilizando-se o algoritmo de 5
pontos para encontrar a matriz essencial e, consequentemente, as matrizes de projecao da
camera em cada um dos dois frames; através da triangulacao dos pontos reprojetados por
essas matrizes, é possivel encontrar a nuvem de pontos 3D inicial. Como serd mostrado
posteriormente, uma inicializacao adequada é fundamental para a obtencao de uma boa
reconstrucao.

Em seguida, conforme novos frames sao adquiridos, os deslocamentos da camera

correspondentes a essas novas imagens, bem como eventuais novos pontos 3D que sao
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reconstruidos, sao incorporados, respectivamente, na trajetéria e na nuvem de pontos
existentes até entao. Isso é feito de maneira andloga a inicializacao: a matriz essencial é
estimada e em seguida, os pontos 3D sao recuperados através de triangulacao. Entretanto,
como o algoritmo de 5 pontos fornece uma igualdade a menos de escala, simplesmente
repetir o procedimento anterior forneceria apenas a direcao de translacao da camera,
bem como nao garantiria que os pontos 3D estariam na mesma escala em diferentes
reconstrugoes. Para resolver esses problemas é preciso introduzir uma etapa intermediaria
para recuperacao do movimento da camera, conhecido algoritmo Perspective-n-Point (PnP),
em que a informagao 3D reconstruida até entao é utilizada para estimar a translagao e
rotacao da camera, de modo a manter a coeréncia de escala. Assim, o algoritmo de 5 pontos
serve como estimativa inicial de movimento da camera, que é corrigido em seguida pelo
algoritmo PnP. A partir dessa estimativa do movimento em escala correta, a triangulagao
pode ser entao realizada pra se obter os pontos 3D.

Finalmente, a tltima etapa do algoritmo representa um processo de otimizagao dos
pontos 3D obtidos e, a0 mesmo tempo, da trajetoria da camera, conhecido como Bundle
Adjustment. Partindo-se da nuvem de pontos 3D e das matrizes de projecao da camera
estimadas ao longo da trajetéria, é possivel reprojetar esses pontos e comparar com o
que foi observado originalmente nos frames do video. Assim, definindo-se uma funcao
objetivo que calcula o erro total dessas reprojecoes, é possivel estabelecer um problema de
otimizagao, em que se busca minimizar esse erro para que sejam obtidos os pontos 3D e a
trajetoria da camera que melhor explicam os dados observados. Essa etapa é fundamental
para a correcao de erros de estimacao que inevitavelmente sao introduzidos devido as
mais diversas fontes de erro, sobretudo ruido nos frames que podem acarretar erros de

correspondéncia entres os pontos de interesse seguidos.
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O diagrama abaixo representa, portanto, um resumo do pipeline proposto e des-
crito brevemente acima. Cada uma das etapas serd discutida em maiores detalhes nas
proximas segoes, ou seja, os problemas serao apresentados formalmente com sua formulagao

matematica correspondente e os algoritmos utilizados para resolvé-los serao descritos.

Inicializagdo da nuvem de
pontos 3D e movimento da
camera

'

Incorporagdo da nova
posigéo e orientagio da
camera
—_— — —

Fluxo optico de Lucas- l T
Kanade

Frames do video Detector de Shi-Tomasi Trajetoria da camera

Trajetdria e pontos
otimizados

Parametros de calibragéo
da camera

Nuvem de pontos 3D

Triangulagdo de novos

pontos 3D —» Bundie Adjustment

Dados . Featuretracking Visualizacido

Reconstrucédo Incremental

Figura 3.1 — Diagrama do pipeline de StM a partir de um video

3.2 Algoritmo KLT e feature tracking

3.2.1 Descricao tedrica

O algoritmo de Kanade-Lucas-Tomasi (KLT) para feature tracking é constituido
de duas etapas fundamentais: em um frame inicial sao detectados pontos de interesse
usando o que é conhecido como detector de Shi-Tomasi e, em seguida, esses pontos sao
encontrados nos frames subsequentes através da estimativa do fluxo optico pelo método
de Lucas-Kanade, que permite encontrar o deslocamento dos pontos de interesse entre
frames. Como o detector de Shi-Tomasi é baseado nas equacgoes de Lucas-Kanade, é preciso
entender inicialmente o conceito de fluxo éptico.

De maneira geral, o fluxo dptico representa a distribuicao de velocidades aparentes
dos elementos de uma imagem causados pelo movimento relativo entre a camera e a cena
observada. Dessa forma, sendo I(u,,u,,t) a intensidade do pixel em (z,y) no instante
t, estimar o fluxo éptico entre dois frames observados com um intervalo de At entre
eles, significa encontrar essencialmente o campo de velocidades (v,,v,) que transforma
I(ug, uy, t) em I(u, + Aug, uy + Auy, t + At). O método de estimagdo de Lucas-Kanade
pertence a categoria dos chamados métodos diferenciais, isto é, métodos que assumem
pequenos deslocamentos Au, e Au, entre os dois frames.

Sob a hipdtese diferencial, é possivel aproximar em primeira ordem a nova in-

tensidade I(u, + Au,,u, + Au,, t + At) através da sua expansao em série de Taylor
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oI oI oI
I (g4 Ay, uy+Auy, t+A) = I(ug, uy, t)+a—%AuI+a—%Auy+aAt+O(Aui, Aui, At?)
(6)

Assim, linearizando a equagao em torno de (z,y,t) tem-se

ol ol ol

e dividindo-a por At

ol N ol N or
Ouy Ve Ou, o T

de modo que definindo v = (v,,v,), VI = (I, I,) = (0.1,0,1) e I; = 0,1, pode ser

0 (8)

reescrita de forma compacta como
VI-v=—I (9)

sendo que a expressao na forma acima é conhecida como equacao do fluxo éptico.

E possivel notar que, de maneira geral, conhecida a distribui¢ao de intensidades
nos dois frames, temos uma tnica equagao com as duas incognitas v, e v,, de modo que
¢é impossivel estimar o fluxo optico diretamente a partir de um tinico pixel e, portanto,
é necessario introduzir alguma restricao extra para a resolucao do problema. O método
proposto por Lucas e Kanade assume, entao, que o fluxo optico é aproximadamente
constante em uma vizinhanga do pixel de interesse e resolve as equagoes (9) com um
método do tipo minimos quadrados para encontrar v, e v,.

Mais explicitamente, dado uma vizinhanca de pixels Y = (uy, ug, ..., u,), sendo
uy, = (T, yx), 0 método assume que o fluxo éptico v = (v,,v,) é 0 mesmo para todos os

pixels e, portanto, Vk € {1,2,...,n} vale a equagao do fluxo éptico
L(u)v, + Iy (ug)v, = —1(ug) (10)

de modo que escrevendo-se as n equagoes obtidas em forma matricial, obtém-se

I(uy) I,(uy) —I;(uy)
Iw(HQ) Iy(u2) Uz _ _It(u2) (11)
_Ix(un) Iy(“%)_ __It(u")_

que é um sistema de equacoes do tipo Av = b sobre-determinado, isto é, com mais

equacoes do que incégnitas.
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Sendo assim, é possivel resolver esses sistema de equacoes através do método
de minimos-quadrados. Para tanto, transforma-se a matriz A em matriz quadrada
multiplicando-a por sua transposta ATAv = ATb, de modo que v = (ATA)"!ATb,
ou seja

-1

Uz _ >k [x(uk)2 > op Le(ur) 1y (ug) = > i La(ug) I (uy,) (12)

Uy Y ly(u) L (ur) 30 1y (ug)? = 2 Ly (ui) Ie(wy)

o que permite recuperar os valores de v, e v, e, consequentemente, calcular o deslocamento
de um pixel dessa vizinhanca de um frame ao seguinte.

Dessa forma, para que o método de estimacao do fluxo 6ptico de Lucas-Kanade
funcione, é necessario que a matriz S = AT A seja inversivel. Partindo-se dessa observacao,
Shi e Tomasi propuseram entao um detector de pontos de interesse que garantiria um
bom funcionamento do método de estimacao do fluxo 6ptico, isto é, que impusesse a
nao-singularidade da matriz S. De um ponto de vista puramente teérico, sendo S € R?*?,
ela possui dois autovalores A; e Ay, de modo que para ser inversivel bastaria garantir que
A1, Ao > 0. Entretanto, na pratica, devido a presenca de ruido, é necessario impor que os
autovalores sejam superiores a um threshold A € R™, relacionado a esse nivel de ruido,
para garantir estabilidade numérica da matriz na hora da inversdao. Além disso, outra
exigéncia numérica para a inversibilidade da matriz seria seu bom condicionamento, isto €,
que os dois autovalores possuissem a mesma ordem de grandeza, de modo que A;/Ag ~ 1.

E interessante notar que S = (VI)(VI)T, de modo que os autovalores A; e Ay
representam a magnitude do gradiente (V) local da imagem em cada uma das duas
direg¢oes. Mais precisamente, se \; > 0 e Ay = 0, isso significa que a imagem sé varia em
uma unica dire¢ao, aquela do autovetor associado a A;, enquanto tem variacao nula na
outra (e de modo andlogo para \; = 0 e Ay > 0). Em termos praticos, na imagem, isso se
traduz pela existéncia de uma linha reta. Por outro lado, se A\; = Ay = 0, nao ha variacao
do gradiente em nenhuma direcao e, assim, isso significa a existéncia de uma zona plana e
continua na imagem. Finalmente, se Ay = Ay > 0, o gradiente varia igualmente em todas
as diregoes e podemos associa-lo a presenca de um vértice na regiao da imagem.

O detector de Shi-Tomasi consiste, entao, em um detector de regidves com vértices
na imagem. Para isso, basta percorré-la por janelas de vizinhanca, estimar a matriz S
e calcular seus autovalores. Caso min(A;, A2) > A e A\;/\y ~ 1, essa janela pode ser

considerada como possuindo um vértice de interesse, cuja evolucao ao longo dos frames
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podera ser bem estimada pelo método do fluxo éptico de Lucas-Kanade. Isto é, o pixel uy
de uma janela detectada no instante ¢ estara na posicao (u* + v, At, u'; + v,At) no frame
seguinte ¢t + At. Assim, a cada frame, basta partir da posicao anterior conhecida, calcular o

fluxo 6ptico nas janelas detectadas usando as equacoes (12) e atualizar as novas posigoes.
3.2.2 Implementacao piramidal

A hipétese fundamental para o funcionamento do algoritmo KLT descrito acima é a
condicao de pequenos deslocamentos, a partir da qual é possivel obter a equacao do fluxo
éptico linearizada (9) e todas as outras relagoes que regem o funcionamento do algoritmo.
Assim, seria necessario produzir um video cujos deslocamentos entre frames fossem da
ordem de menos de 1 pixel, o que nao é viavel considerando-se uma aquisicao habitual
de um video, mesmo com framerates elevados. Para atacar esse problema e aumentar a
robustez geral do algoritmo, em (BOUGUET et al., ) foi proposta uma implementagao
do método de estimacao do fluxo 6ptico de Kanade-Lucas utilizando a representacao da
imagem em piramide.

De maneira geral, uma piramide de imagens consiste em uma sequéncia de réplicas
dessa imagem que sao geradas aplicando-se filtros de suavizacao e, em seguida, sub-
amostrando a imagem resultante. O objetivo de tal representacao é obter uma sequéncia de
imagens com niveis decrescentes de resolucao. Assim, partindo-se da imagem original I, de
tamanhos n, e n, em cada uma das suas diregoes, e considerando-a como sendo o nivel zero,
isto é, I° = I, é possivel construir recursivamente essa sequéncia de imagens I, I?, ..., I*

de modo que no nivel L tenha-se imagens com o mesmo contetido e de dimensoes

L—1
n +1
nﬁgch e njg

n,ffl +1

5 (13)

isto é, grosso modo, as dimensoes sao divididas por 2 a cada nivel.
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O interesse desse tipo de abordagem é que o fluxo 6ptico pode ser estimado em
qualquer um dois niveis superiores da piramide de imagem e, em seguida, propagado aos

niveis inferiores e de maior resolucao. Como mostrado no trabalho original, no nivel L da

piramide, a relacao entre o fluxo éptico nessa resolucao v e o fluxo éptico real v é dado
por:
.,V

o que significa que, para o tipico valor de L = 4, a magnitude do fluxo éptico no quarto
nivel é 16 vezes menor do que na imagem com resolucao original.

Portanto, esse tipo de abordagem permite recolocar videos com deslocamentos
arbitrarios entre frames nas condicoes de pequenos deslocamentos que sao exigidas por
hipétese pelo método de Lucas-Kanade, bastando-se aumentar o niimero de niveis da
piramide calculados. Evidentemente, essa abordagem possui limitagoes e, iniciar estimativas
a partir de imagens com resolucao muito baixa pode acabar degradando o resultado final
e, como apontado no trabalho original (BOUGUET et al., ), tipicamente redugoes de 3 a 4
niveis sao suficientes para a obtencao de um bom compromisso entre reducao significativa

da magnitude deslocamentos e qualidade da imagem para a estimativa.

3.2.3 Gerenciamento das features

Finalmente, um ultimo problema com a implementacao basica do KLT que precisou
ser adaptado foi o gerenciamento e inclusao de novas features detectadas e acompanhadas.
Isso porque, em sua versao inicial, o algoritmo em primeiro lugar detecta vértices de
interesse no primeiro frame através do método de Shi-Tomasi e os acompanha nos frames
seguintes, estimando seus deslocamentos através do fluxo optico de Lucas-Kanade.

Entretanto, para videos mais longos, é possivel que todas features detectadas no
primeiro frame eventualmente saiam de quadro, de modo que se nao for incluida nenhuma
regra de atualizacao e inclusao de novas features, o restante da sequéncia de frames nao tera
pontos observados e, consequentemente, nao sera possivel realizar as etapas seguintes de
reconstrugao. Dessa forma, foi necesséario desenvolver essa regra de atualizacao e inclusao de
novos pontos de interesse que passariam a ser acompanhados, de modo a manter a coeréncia
entre os pontos antigos e os novos. Isso foi feito baseando-se em (ESCRIV4; MENDONCcA,

2019), onde foi desenvolvido um método para se estabelecer essa correspondéncia de pontos



32

detectados a cada atualizagao.

Seja L; a matriz cujas linhas 13,11, ... 1} representam as n features acompanhadas
inicialmente pelo KLT. Assim que dado o sinal de reset, uma nova matriz Ly serd formada,
com m novas features. A correspondéncia entre L; e Ly é feita, entao, através da matriz
C, com n linhas e m colunas, cuja entrada ¢;; serd dada por

1, sellll =13 <A
¢y = g 8 (15)

0, caso contrario
isto é, caso as features 1} e l? estejam a uma distancia em pixels menor que um determinado
threshold ), definido, elas sao consideradas iguais; caso contrario, ¢ possivel afirmar que
elas estao distantes o suficiente para serem classificadas como diferentes.
Em seguida, para cada coluna j da matriz de correspondéncia, é possivel calcular a

soma o0; em todas as linhas de C
05 =) ¢y (16)
i=1

de modo a se obter um vetor ¥ = [0 09 ... 0,,,], cujas componentes nulas correspondem
exatamente as features de Ls consideradas suficientemente distantes de todas as features
ja existentes em L e que, portanto, podem ser incorporadas.

Assim, a matriz L; é incrementada com as linhas j, de Ly, tais que o;, = 0,

formando uma nova matriz L dada por

12

J1

12

| Tk |

E importante notar que, naturalmente, as features do KLT vao deixando de ser
acompanhadas conforme vao sumindo do quadro e que, adicionalmente, o sinal de reset
para incrementar a matriz ocorre quando o ntimero de linhas fica abaixo de um certo
limite inferior. Com isso, é possivel garantir que o nimero de features acompanhadas esteja
sempre aproximadamente constante, sem aumentar muito o nimero ou, inversamente, ficar

sem nenhuma.
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3.2.4 Etapa de feature tracking resultante

Dessa forma, a etapa de feature tracking pode ser resumida através dos seguintes

passos descritos a seguir:

1. No primeiro frame a matriz L de features é inicializada com as coordenadas u; =
(uk, u’?j) dos vértices encontrados pelo detector de Shi-Tomasi;

2. Para os frames subsequentes, o fluxo éptico correspondente v = (vF, v’yC

) de Lucas-
Kanade ¢ estimado em cada vizinhanca dos vértices encontrados;

3. As posigdes uy, da matriz L sao atualizadas com u), = (uf + v*At, u’; + v’y“At). Caso
a nova posicao seja fora do quadro da camera, a feature é descartada de L;

4. Caso o ntmero de features acompanhadas caia abaixo de um determinado valor,
o detector de Shi-Tomasi é usado novamente e novas features sao incorporadas a
matriz L como descrito na se¢ao anterior;

5. Os passos 2 a 4 sao repetidos até que todos os frames do video tenham sido

processados.
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3.8 Structure from Motion incremental

De maneira formal, o framework de SfM incremental pode ser descrito da seguinte
maneira: dado um conjunto de pixels de interesse U = {uy, uo, ..., u; }, obtidos na etapa
de feature tracking a partir de m frames de matrizes de projegdo P = {Py, Py, ..., P, } e
n pontos tridimensionais X = {X;, Xa, ..., X,,} inicialmente desconhecidos. O objetivo é
estabelecer um pipeline capaz de produzir estimativas de matrizes e pontos conforme os
frames vao sendo observados.

Isto é, apds a inicializacao da nuvem de pontos estimada X = {Xl, Xz, ey Xr}, r<
n, e das matrizes de projecao dos dois primeiros frames P = {151,152}, a cada frame
observado, uma nova matriz de projecao necessariamente sera estimada e incorporada no
conjunto de estimativas P e, caso algum ponto 3D novo seja reconstruido, ele também
serd incorporado no seu respectivo conjunto X.

Assim, no k-ésimo frame processado apds a inicializagao, teremos P = {f’l, f’g, e f’k}
e X = {Xl, XQ, e XTH}, 0 <1 <n-—r, com cada nova estimativa incorporada sendo feita
apenas com base nas informagoes reconstruidas até entao. Esse processo de incorporagao
de matrizes de projecao e pontos ocorre, entao, até que todos os frames tenham sido
processados. A seguir, cada uma das etapas necessarias para se estabelecer esse processo

de reconstrucao incremental serao detalhadas.
3.3.1 Inicializacao

Na etapa de inicializagao nao existe nenhuma estrutura tridimensional ja recons-
truida e, assim, a unica informacao disponivel é aquela dos pontos projetados 2D e suas
correspondéncias entre dois frames. Como mencionado anteriormente, esse problema pode
ser resolvido entao utilizando-se a restri¢ao epipolar da equagao (4), o que é feito através
de uma classe de algoritmos conhecidos como algortimos de n pontos. Devido a maior
precisao, menor sensibilidade ao ruido e por nao sofrer do problema conhecido como
degeneragao planar (basicamente, existéncia de ambiguidades na solucao da restri¢ao

epipolar) o algoritmo de 5 pontos introduzido por Nistér em (NISTER, 2004) foi utilizado.
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De maneira simplificada, partindo-se da equacao epipolar entre os pixels correspon-

dentes u e 0’ de dois frames distintos
' (KH)'EK'd' =0 (18)

em que K é a matriz de calibragao da camera suposta conhecida, o algoritmo de 5 pontos

busca estimar a matriz essencial E considerando duas restri¢oes adicionais sob sua estrutura

det(E) = 0 (19)

1
EE'E — §tr(EET)E =0

demonstradas, por exemplo, em (FAUGERAS; FAUGERAS, 1993). Essas restrigoes dimi-
nuem os 9 graus de liberdade originais para apenas 5, de modo que teoricamente apenas
5 pontos correspondentes entre as imagens precisam ser utilizados. Na pratica, mais do
que 5 correspondéncias sao utilizadas de modo a se aumentar a robustez da solucao, o
que gera um sistema de equagoes sobre-determinado e, portanto, garante uma solucao no
sentido de minimos-quadrados.

A equagao (18) pode ser vista, basicamente, como um sistema linear homogéneo
nos parametros da matriz essencial, cuja solucao pode ser encontrada, portanto, por
decomposi¢ao em valores singulares (SVD). Assim, dado o sistema de m x 9 equagoes
introduzido por (18), com m > 5, dependendo do niimero de correspondéncias utilizado,
sua solucao serda uma combinacao linear das 4 matrizes M; associadas aos 4 valores

singulares de menor magnitude:
4
E=) aM; (20)
i=1

e como na pratica as estimativas realizadas sao obtidas a menos de um fator de escala, é

possivel impor ay = 1 e reescrever a equagao em termo dos coeficientes restantes &; = «; /oy

E == 6(1M1 + &3M3 + 5[3M3 + M4 (21)

Assim, substituindo-se (21) em (19), obtém-se um sistema de equagbes polinomiais
nos coeficientes @;, cuja solucao permite determinar completamente E. Nistér propoe,
entao, um método eficiente para encontrar as raizes desse sistema de equacoes polinomiais,
cujo detalhamento foge do escopo desse texto e pode ser consultado em seu trabalho

original (NISTER, 2004).
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Uma vez encontrada a matriz essencial, é necessario recuperar a matriz de rotacao
R e o vetor de translagao t associados ao movimento que leva a camera de um frame ao

seguinte, usando a definicao da matriz essencial apresentada anteriormente
E ~ [t] R (22)

em que [t]y é a matriz de produto externo associada ao vetor de translacao e dada por

0 —t. t,
te=|t 0 —t, (23)
~t, t, O

Isso é feito realizando-se a decomposicao em valores singulares da matriz essencial
E = UXV' com X = diag(1,1,0) e U e V tais que det(U) > 0 e det(V) > 0. Como
mostrado em (HARTLEY; ZISSERMAN;, 2003), definindo-se

0 10
D=|-10 0 (24)
0 01

tem-se que t ~ t, = [uiz us3 uzs]’ e R ~ R, = UDV' ou R ~ R, = UD'V'.
Consequentemente, qualquer uma das combinacoes de translacao e rotacao anteriores
produz uma matriz essencial que satisfaz a equacao epipolar (18).

Para resolver essas ambiguidades e encontrar uma solugao tnica, é preciso fixar a
matriz de projegao do primeiro frame como sendo P ~ K[I3 | 0] e arbitrar uma translagio
t, unitaria entre os frames. Com isso, existem basicamente 4 possibilidades para a matriz
de projegao do segundo frame: Py ~ K[R, | t,], Pz ~ K[R, | —t.], P ~ K[Ry | t.],
P}, ~ K[R, | — t,], sendo apenas uma delas correspondente ao movimento real. A outra
solucao representa aquela obtida se uma das projecoes for rotacionada de 180° e as duas
restantes sao as solugoes espelhadas correspondentes as duas anteriores.

A escolha da solucao correta deve ser feita utilizando o chamado cheirality check
que, basicamente, a partir de um ponto 3D triangulado usando uma das possiveis solugoes,
permite checar qual matriz de projecao garante que o ponto esteja de frente com a camera
e na orientacao projetada correta (NISTER, 2004). Como resultado, obtém-se portanto
as duas primeiras matrizes de projecio estimadas Py ~ K[I5 | 0] e Py ~ K[Rqs | t152],

com |[t152|| =1
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Estimadas a matrizes de projecao, a ultima etapa da inicializacao consiste em
triangular os pixels para obter os pontos tridimensionais correspondentes. O algoritmo
de triangulagao bésico, descrito em (HARTLEY; ZISSERMAN;, 2003), é conhecido como
Direct Linear Transform (DLT) e consiste, novamente, na solu¢ao de um sistema linear
homogeéneo sobre-determinado, através de uma decomposi¢ao em valores singulares da
matriz do sistema.

Esse sistema ¢é obtido da seguinte forma: dado um ponto tridimensional X e suas
projegoes em dois frames distintos u = [u v] e u’ = [’ V'], tem-se que u = PX e u’ = P’X.
Realizando um produto vetorial dos dois lados de cada equagao de projegao, obtém-se
entao u X (PX) =0 e u' x (P'X) = 0, que sdao equagdes lineares nas componentes de X

da forma:

(vp’" = p* )X =0 (25)

(UPQT . UplT)X =0

Como a terceira equagao ¢ uma combinagao linear das duas primeiras, uma vez que

temos up?’ —vp!'’T = —u(vp®" — p?") + v(up®’ — p'"), cada par de pontos projetados

correspondentes fornece 4 equagoes que podem ser escritas na forma homogénea AX = 0

up3T _ plT
3T 2T
vpT —Pp
A= f (26)
u/p/5T _ pllT
_U/plsT _ p/2T_

cuja solugao X corresponde ao vetor associado ao menor valor singular de A e, portanto,
fornece a melhor estimativa de X no sentido de minimos-quadrados.

Assim, considerando-se r pontos tridimensionais X1, Xs, ..., X,. e seus respectivos
pares de projecao nos dois frames iniciais uy, Uy2, Ua, Ugg, ..., U1, Uye, €M qUE U;; Tepre-
senta o i-ésimo ponto tridimensional projetado no j-ésimo frame, obtidos na etapa de
feature tracking, bem como as matrizes de projecao P, e P, estimadas anteriormente pelo
algoritmo de 5 pontos, basta aplicar o algoritmo DLT descrito acima para que se obtenha

~

entao a estimativa dos r pontos 3D triangulados Xl, X2, ooy X
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3.3.2 Refinamento da inicializacao e incorporacao de novos frames

Uma vez inicializadas as estimativas da nuvem de pontos 3D X = {Xl, Xg, o Xr}
e das matrizes de projecao frames P = {f’l, f’g}, o préoximo passo consiste na adigao
incremental de novos frames P, para a composigao de trajetéria da camera e, em seguida,
a triangulacao de eventuais novos pontos Xr+z nunca antes vistos na cena.

De maneira analoga a inicializacao, a estimativa da matriz de projecao poderia ser
feita através do algoritmo de 5 pontos descrito anteriormente. Entretanto, como mostrado,
a solucao do algoritmo impoe P, ~ K[I3 | 0] e P, ~ KR (-1)-k | t-1)-k), sendo
|[te—1)—k|| = 1. Isso significa que s6 seria possivel recuperar a dire¢do do movimento
relativo entre os frames, sendo impossivel distinguir translagoes de magnitudes diferentes
e, consequentemente, a trajetéria recuperada nao corresponderia a realidade.

Uma forma de contornar esse problema é utilizar o algoritmo de Perspective-n-
Points, que utiliza a informacao da nuvem 3D ja reconstruida para estimar a matriz de
projecao, uma vez que baseia-se na correspondéncia entre os pontos tridimensionais e os
pixels observados. Com a nuvem 3D inicializada na etapa anterior, esse tipo de abordagem
torna-se viavel. Partindo-se dos r pontos tridimensionais em X , que estao expressos em um
sistema de referéncia global, cada projegao do i-ésimo ponto no j-ésimo frame w;; = [u u’yj]

serd dada pela chamada equacao de colinearidade

ji = Xt by (27)
o)X+t

ui — (rh) "X + ty
L)X

sendo r;, a k-ésima linha da matriz de rotacao R; do j-ésimo frame

R; = |r} (28)

et; = [ty t, t.] 0 seu vetor de translagao associado. Dessa forma, conhecidos os pontos
e suas projecoes correspondentes, as equagoes acima fornecem uma forma de achar os

parametros de rotagao e translacao desconhecidos.
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Como mostrado em (LEPETIT; MORENO-NOGUER; FUA, 2009), métodos ite-
rativos garantem as melhores performances nessa tarefa. Essencialmente, partindo-se de

uma estimativa inicial para R; e t; é possivel definir a seguinte funcao objetivo

r (rj)TX< 4 2 (rg)TXA + 2
7 1 {2 x 7 1
R, 1)) = Z Ul e | Tl P Te— (29)
i=1 3 z 3
que representa, essencialmente, o erro de reprojecao do ponto 3D no frame. Definindo
O = (R;, t;), a solugao 6tima para o problema O = (Rj, f:j) serd dada minimizando esse
erro de reprojecao

~

® = arg Hgn f(®) (30)

Usualmente, o método de otimizacao empregado nessa classe de problemas é conhe-
cido como Levenberg-Marquardt, ou minimos-quadrados amortecido, que sera explicitado
na proxima secao. Como sera visto, sendo uma otimizacao nao-linear, a qualidade da
solucao depende fortemente da estimativa inicial. Uma possibilidade para uma boa inicia-
lizagao do problema, sobretudo para a matriz de rotagao R, é a utilizagao do algoritmo
de 5 pontos apresentado anteriormente. Entretanto, sendo o vetor de translagao unitario,
ele pode estar muito longe de um bom chute inicial, principalmente no caso em que ha um
grande deslocamento da camera entre frames.

De modo a se obter estimativas mais robustas, portanto, foi utilizado o algo-
ritmo conhecido como Efficient Perspective-n-Points (EPnP), proposto em (LEPETIT;
MORENO-NOGUER; FUA, 2009). Essencialmente, o método representa um algoritmo
nao-iterativo de complexidade linear capaz de resolver o problema de recuperacao das
matrizes de rotacao e translagao a partir de pontos 3D e suas respectivas projegoes. O
detalhamento do método foge do escopo desse trabalho e pode ser consultado em sua
publicacao original. De toda forma, os autores mostram que a combinacao desse método
com uma otimizacao simples como a descrita acima permite que se obtenham resultados
comparaveis ao estado-da-arte que algoritmos iterativos mais complexos produzem. Dessa
forma, dado o equilibrio entre performance e velocidade de processamento, esse método
foi escolhido.

O resultado da otimizacao permite, portanto, estimar a matriz de projecao do
j-ésimo frame Pj ~ K[f{] | fj] e, consequentemente, triangular eventuais novos pontos
tridimensionais X, conforme descrito na secao anterior, incrementando, assim, a cada

frame, os conjuntos de estimativas P e X sequencialmente.
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E importante notar que, ao utilizar essa abordagem, todos os frames serao pro-
cessados baseando-se nas informacoes tridimensionais recuperadas, essencialmente, nos
dois primeiros, de modo que é preciso garantir que o primeiro passo garantird um bom
comportamento do pipeline ao longo do resto do video. Assim, caso necessario, é possivel
refinar a inicializagdo com alguns dos frames processados com o método descrito acima e,
em seguida, avaliar a evolugao do erro de reconstrucao para garantir que a inicializacao foi
adequada e, caso contrario, recomecar o processo.

Mais precisamente, uma vez feita a inicializagdo como descrita na se¢ao anterior, é
possivel processar k frames utilizando o PnP como descrito acima e, por fim, aplicando
a otimizagao global que sera detalhada na proxima secao. De um ponto de vista tedrico,
isso significa que os pontos reconstruidos e as k + 2 matrizes de projecao estimadas sao
tais que minimizam o erro empirico de reprojecao. Como a funcao objetivo depende da
quantidade de pontos observados, é possivel que a solucao encontrada corresponda a um
minimo local e especifico desses frames iniciais, de modo que nao necessariamente causara
uma melhora nos resultados dos demais frames seguidos.

Para lidar com esse problema, outros p frames seguintes sao processados como
anteriormente, mas com a nova nuvem de pontos otimizada, e o erro de reprojecao de
cada um deles é calculado. Caso o erro médio fique abaixo de um determinado threshold, a
inicializacao e demais reconstrugoes realizadas até entao sao consideradas satisfatérias e
os demais frames sao processados e as respectivas matrizes de projecao e pontos 3D sao
incluidos normalmente nos seus respectivos conjuntos. Caso contrario, a inicializacao é
considerada ruim e desloca-se de um a janela dos k + p+ 2 frames processados, jogando-se
fora, portanto, o primeiro e reiniciando-se as reconstrugoes com os demais. Esse processo
¢é repetido até que a condicao de erro minimo seja satisfeita, momento a partir do qual
o algoritmo segue normalmente como explicado até que se terminem os frames a serem

processados.
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3.3.3  Bundle Adjustment

A ultima etapa do pipeline consiste na otimizacao conjunta dos pontos tridimen-
sionais e das matrizes de projecao estimadas, num processo conhecido como Bundle
Adjustment (BA). Essa etapa deve ser entendida como um refinamento global de P e
X , diferindo portanto dos demais processos iterativos e de otimizacao descritos, uma vez
que busca encontrar o parametros da camera e os pontos que melhor descrevem os dados
observados em sua totalidade.

Formalmente, dado o conjunto de parametros ® = (75, X ), formado pelas estima-
tivas iniciais das matrizes de projecao e dos pontos reconstruidos, bem como os pixels
projetados originais U, o BA pode ser definido como o seguinte problema de encontrar *

tal que
O* = arg m(gn LU, O) (31)

sendo £ uma funcao que fornece uma medida do erro empirico, ou residuo, entre o modelo
utilizando os parametros estimados ® e os dados observados U.

Tipicamente, considera-se £ como sendo a soma do erro quadratico entre os pixels
observados u;; e os reprojetados a partir dos parametros estimados ;;(©) = lADjXZ-, de

forma andloga a equacao (29), que pode ser reescrita de forma mais sucinta como

n m

LU,0)= %Z > [(ui; — 13;(©))* + (vig — 0:;(©))?] = %HF(G)HZ (32)

i=1 j=1
em que ||.|| representa a norma [? do chamado vetor de residuos r(®), que possui, em
cada uma das suas coordenadas, o erro de reprojecao para cada um dos pixels observados,
o que é dado por r(®) = [uy; — 111(O), ..., Wpy, — W (O)].

O método de otimizacao comumente empregado na resolucao do problema acima é
chamado algoritmo de Levenberg-Marquardt (LM) (MORE, 1978), que essencialmente
representa uma combinagao de dois algoritmos de otimizagao: método de Gauss-Newton
e o método de descida de gradiente. Nesses dois métodos, a ideia central consiste em
encontrar uma regra iterativa de atualizacao dos parametros do tipo ®*+1 = @* 4+ h*, que
faca © convergir para ©* a partir de uma estimativa inicial @°.

No caso do algoritmo de descida do gradiente, a regra de atualizagao na k-ésima
iteracao h* ¢ feita na direcdo oposta do gradiente de £(U, ©) em relacdo aos parametros

©F obtidos até entao. Isso porque o gradiente de uma funcao representa sua direcao
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de maior variacao e, ao se caminhar em sua direcao oposta, busca-se uma regiao que
representa um minimo ao menos local. Temos entao que

Gﬁ_ or

P ="96 = 90"

0) (33)

em que Jr/00® é obtida derivando-se cada um dos residuos em relagao a cada um dos
parametros. Isso define uma matriz que possui P = n x m linhas, isto é, uma por pixel
observado, e Q = dim(©) colunas, isto é, uma para cada parametro da otimizagao. Essa
matriz recebe o nome de matriz jacobina J cujas entradas sao dadas por

_ Oy

JPQ<®) - 8@
q

(©) (34)
de forma que, no caso do método da descida de gradiente, tem-se, finalmente
hy, = —Jr(0®) (35)

o que evidencia que ¢ um método de primeira ordem, em que apenas o gradiente da fungao
objetivo precisa ser calculado, que apresenta baixa complexidade computacional e boas
propriedades de convergéncia para funcoes objetivas mais simples. Porém, para problemas
mais complexos, a convergéncia pode demorar a ocorrer e se tornar proibitiva.

O algoritmo de Gauss-Newton, por outro lado, representa um algoritmo de ordem
superior, uma vez que sua regra de atualizacao depende de derivadas de segunda ordem.
Ele baseia-se na hipdtese de que o vetor de residuos é aproximadamente quadratica perto

do 6timo. Como mostrado em (MORE, 1978), isso significa que
37 3]hy, = —Jx(6) (36)

e devido a existéncia de uma inversao de matrizes, o algoritmo de Gauss-Newton é
relativamente mais complexo, porém garante convergéncia robusta de uma maior classe de
problemas.

O algoritmo LM introduz um parametro de amortecimento A que faz com que a
otimizacao seja interpolada entre a descida de gradiente e o método de Gauss-Newton.

Essencialmente, sua direcao de otimizacao é dada por
(37T + M]hy, = —Jr(©) (37)

em que no inicio, A é grande de modo a favorecer a descida de gradiente e, conforme
o algoritmo se aproxima de um minimo, seu valor é aumentado aos poucos, de modo a

acelerar a convergéncia usando o método de Gauss-Newton.
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Além de utilizar o algoritmo LM, para que seja computacionalmente viavel aplicar
o BA em larga escala, isto é, com potencialmente centenas ou milhares de frames e, ainda
assim, obter resultados rapidos, é possivel utilizar a estrutura de matrizes esparsas para
armazenar o jacobiano, uma vez que a grande maioria das derivadas parciais sera igual a
zero. Isso porque cada componente do vetor de residuos u;; — 1;;(®) na verdade depende
apenas dos 6 parametros de f’j (3 rotagoes e 3 translagoes) e dos 3 parametros de X;.

Isto é, para n pontos 3D vistos todos em m frames, a matriz jacobiana possui
() = 6m + 3n colunas, das quais apenas 9 sao nao-nulas por linha. Dessa forma, é possivel
guardar apenas as entradas nao-nulas do jacobiano, o que nao so6 reduz a complexidade
em memoéria do método, mas principalmente acelera as operagoes matriciais do jacobiano
envolvidas no calculo da direcao de otimizacao hy,,.

O algoritmo resultante é conhecido, portanto, como Sparse Bundle Adjustment
(SBA) e é particularmente adaptado para aplicagoes com um grande volume de dados que
precisam ser processados de maneira otimizada, o que é o caso dos frames de um video. E
importante notar que essa etapa pode ser aplicada tanto ao longo do processamento do
video, ao se acumular um determinado nimero de frames, quanto no final quando todos

os frames ja foram adquiridos.
3.3.4 Etapa de reconstrucao incremental resultante

Resumidamente, a reconstrucao incremental pode ser, entao, descrita através da

sequéncia de passos a seguir:

1. Dados dois frames iniciais, o algoritmo de 5 pontos é utilizado para se se estimar
as respectivas matrizes de projecao P, e P,. Com elas, o algoritmo DLT é aplicado
para triangular os r pontos 3D observados X1, Xs, ..., X, e inicializar a nuvem de
pontos;

2. A inicializacao é, entao, refinada utilizando-se a nuvem de pontos inicial para estimar
as matrizes de projecao dos k frames seguintes através do algoritmo EPnP, cuja

solucao é refinada por uma otimizacao com o algoritmo LM,
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3. O erro de reconstrucao é entao calculado ao se obter a matriz de projecao dos p
frames subsequentes: caso esse erro seja menor do que um threshold, a inicializacao
¢ considerada adequada e todas as k + p + 2 matrizes de projecao estimadas sao
mantidas, bem como eventuais novos pontos 3D sao adicionados; caso contrario, os
passos 1 e 2 sao repetidos deslocando-se um frame da janela até que o threshold seja
atendido;

4. Os frames seguintes sao todos processados utilizando-se EPnP, seguido do refinamento
iterativo, para se estimar as novas matrizes de projecao e, em seguida, triangular
eventuais novos pontos para serem incluidos na nuvem existente;

5. A solugao é refinada utilizando-se o algoritmo de Sparse Bundle Adjustment para
otimizar as posigoes da camera e os pontos 3D reconstruidos. Dependendo da
configuracao escolhida, essa etapa pode ser feita a cada n frames processados pelo

passo 4 ou apenas no fim do video.

3.4 Processamento dos dados

Além das duas grandes etapas do pipeline proposto, feature tracking e StM incre-
mental, existem etapas de pré e pds-processamento dos dados que sao necessarias para o
funcionamento do método proposto. Mais especificamente, tanto o algoritmo de 5 pontos
para estimacao da matriz essencial, quanto o algoritmo de triangulagao e, finalmente, o
algoritmo PnP, assumem que a camera utilizada para aquisicao esteja calibrada, isto é, que
a matriz de parametros intrinsecos K seja conhecida. Por isso, para cada novo dispositivo
utilizado para aquisicao do video, a etapa de calibracao que serd descrita na proxima segao
precisa ser realizada antes de se aplicar o restante do pipeline.

Além disso, ap6s o processamento dos frames do video, tanto a nuvem de pontos 3D
quanto a trajetéria precisam ser visualizadas. Para tanto, é necessario garantir que todas
as posicoes e orientacoes das cameras, assim como as coordenadas dos pontos reconstruidos,
estejam escritas no mesmo referencial. Entretanto, em geral, os algoritmos empregados no
pipeline fornecem referenciais relativos, de modo que uma etapa de conversao entre bases

precisa ser aplicada, como serd mostrado adiante.



45

3.4.1 Calibracao da camera

O processo de calibragao de uma camera consiste em recuperar os chamados

parametros intrinsecos dessa camera, isto é, a matriz K, que em sua forma geral, é dada

por
fu v

K=10 f, c (38)
0 0 1

em que f, e f, sao as chamadas distancias focais em cada uma das diregoes, ¢, e ¢,
sao as coordenadas do centro optico e v é a chamada torcao entre os eixos de projecao.
Usualmente, os pixels sao quadrados, de modo que f, = f, e v = 1, e, além disso, em geral
o centro éptico coincide com o centro da imagem.

O algoritmo de calibragao é baseado na trabalho apresentado em (ZHANG, 2000).
Essencialmente, partindo-se de uma série de imagens com pontos de interesse cujas
coordenadas 2D, bem como as coordenadas 3D originais, sao conhecidas, é possivel obter
os parametros intrinsecos. Para que essas coordenadas sejam conhecidas, um padrao
de calibracao conhecido e facilmente detectavel deve ser usado. Em geral, esse padrao
corresponde a um quadriculado preto e branco, como um tabuleiro de xadrez. Assim, a
primeira etapa da calibracao, que corresponde a detecgao dos pontos de interesse nas
diferentes imagens, fica muito mais precisa: utilizando um detector de vértices, como
o descrito na secao 3.2, é possivel realizar a correspondéncia dos vértices do padrao
quadriculado com precisao sub-pixel; além disso, ao se utilizar um tabuleiro plano, é
possivel saber a priori que todos os pontos 3D estao no mesmo plano.

Uma vez detectados os pontos em cada uma das imagens, o processo de calibracao
consiste em resolver a equagao de projecao u = K[R | t]X em que u e X foram determi-
nados na detecgao e K e [R | t] precisam ser encontrados. Ao se combinar as equagoes
de todos os vértices do tabuleiro para todas as imagens, é possivel obter um sistema de
equacoes sobre-determinado e linear nos parametros intrinsecos e extrinsecos da camera,

de modo que ¢é possivel obter uma solugao 6tima no sentido de minimos quadrados.
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3.4.2 Visualizagao

Como discutido nas secoes anteriores, os diferentes algoritmos empregados para
a obtencao da matriz de projecao da camera e dos pontos tridimensionais nao fornecem
os resultados em um sistema de coordenadas absoluto e comum a todos. Ao contrario,
o algoritmo de 5 pontos fornece um deslocamento relativo entre um frame e outro e o
algoritmo PnP fornece as informagoes de deslocamento e orientacao no referencial da
camera.

Dessa forma, para que seja possivel visualizar os pontos 3D e a trajetéria da camera
de maneira coerente, é necessario arbitrar um sistema de referéncia considerado o global
e, a cada etapa, realizar uma transformacao de coordenadas, para que todos os pontos e
matrizes de projecao estejam descritos nesse mesmo sistema de coordenadas. No pipeline
proposto, isso é feito fixando-se o sistema de coordenadas da primeira camera como sendo
o global e descrevendo as demais cameras e pontos nesse mesmo sistema.

Para isso, feita a inicializacao da nuvem de pontos, que estara naturalmente descrita
no sistema de coordenadas da primeira camera, basta passar a matriz de rotagao Ry e
o vetor de rotacao t; estimados no k-ésimo frame no sistema de coordenadas da camera
para o sistema de coordenada dos pontos 3D.

Isso significa, essencialmente, inverter a matriz homogénea dos parametros extrinsecos
da camera [R | t] (uma vez que os parametros intrinsecos de calibragao independem do
sistema de coordenadas). Isto ¢, obtém-se [R’ | t'] = ([R | t])~!. Usando-se o fato que a
matriz de rotagao é ortogonal, sua inversa ¢é igual sua transposta, de modo que tem-se
finalmente [R’ | t'] = [R" | — R"t]. Aplicando-se essa transformacao, portanto, tem-se

todas as matrizes e pontos no mesmo sistema de coordenadas.
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4 Implementacao

Assim como a etapa de concepgao tedrica do pipeline, a etapa de implementacao
é crucial para o bom andamento do projeto e pode ser a diferenca entre um projeto
fracassado ou fora das especificagoes técnicas e administrativas e um projeto de sucesso.
Nessa sessao sao abordadas algumas das praticas utilizadas no auxilio da implementagao do
projeto na seguinte ordem: explicacao do cddigo desenvolvido e sua estrutura; explicacao
sobre o ambiente de desenvolvimento, dependéncias e utilizacao do software desenvolvido;

boas praticas de desenvolvimento utilizadas e outras consideragoes.

4.1  Ezecucao

Como descrito na segoes anteriores, o pipeline proposto tem como objetivo a
reconstrucao esparsa de cenas e da trajetoria de uma camera a partir de um video
monocular. Dessa descricao podemos extrair o arquivo de video como a primeira entrada
do software e a reconstrugao como saida, que pode ser tanto um aquivo com todos os
dados gerados quando uma representagao grafica do resultado.

Porém, visto que os algoritmos utilizados necessitam de diversos parametros de
configuracao, temos um arquivo contendo esses valores como a segunda entrada do pipeline.
Dessa forma, a execucao do pipeline se resume a escolher o video a ser reconstruido,
escolher os parametros de configuracao adequados, executar o cédigo e, por fim, consumir

a salda da forma adequada.

4.2 FEstrutura do codigo

Visto que diversos algoritmos foram implementados, cada um com diferentes entra-
das, saidas e condicoes de utilizacao, além dos outros componentes que realizam a jungao

de todas as partes, a seguinte estrutura foi proposta:

e main.py: ponto de entrada do usudrio, responsavel por carregar o arquivo de confi-
guragoes, instanciar o pipeline, lancar a execucao e eventual visualizacao da recons-
trucao ou andlise dos dados de erro gerados;

e video_pipeline.py: contém a classe VideoPipieline, responsavel por orquestrar a
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resconstrucao desde a extragao de pontos de interesse do video e etapa de inicializacao
da reconstrucao até as otimizagoes finais apds o tratamento do video por completo;

e synthetic_pipeline.py: contém a classe SyntheticPipieline, classe filha de VideoPipie-
line. Essa classe permite, em suma, a substituicao do algoritmo KLT pela criacao
de cameras e cenas sintéticas, de forma que as etapas da reconstrucao possam ser
validadas e exploradas sem a necessidade de um video real junto as dificuldades
associadas ao pipeline completo;

e config.py: contém a definicao de todos os itens do arquivo de configuragoes e seus
respectivos tipos. Também contém fungoes para a andlise do arquivo de configuragoes
e conversao para a estrutura de dados usada internamente;

e video_algorithms.py: contém todos os algoritmos relacionados diretamente ao trata-
mento do video e extragao de informagoes como o algoritmo KLT e de juncao de
conjuntos de pontos de interesse distintos;

e reconstruction_algorithms.py: contém os algoritmos responsaveis pela reconstrugao da
cena e trajetdria a partir dos pontos de interesse 2D detectados. Dentre os algoritmos
estao o algoritmo de 5 pontos, as variagoes do algoritmo solvePnP e o algoritmo de
triangulacao e de reprojecao;

e init_agorithms.py: neste arquivo esta implementada a rotina utilizada para iniciar a
reconstrucao utilizando os algoritmos descritos acima;

e bundle_adjusment.py: contém as funcoes relacionadas ao Bundle Adjustment, como
estruturacao dos dados antes e depois da otimizagao, fungoes de apoio a otimizacao
e a propria funcao que realiza a otimizacao;

e utils.py: contém fungoes diversas que auxiliam no desenvolvimento nas demais partes

do codigo.

Podemos notar pela lista acima que, apesar do Python ser uma linguagem orientada
a objetos, ha um baixo ntimero de classes novas, sendo a maior parte do cédigo imple-
mentada sob a forma de funcoes. Essa estrutura foi consequéncia do ponderamento das
préticas adotadas no projeto (descritas abaixo) com o objetivo de melhorar as métricas de
performance do pipeline, diminuir a incidéncia de erros de programagao e permitir que

futuras modificagoes no coédigo e sua compreensao sejam facilitas.
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4.8 Bibliotecas utilizadas

Nessa secao sao abordadas e explicadas algumas das bibliotecas utilizadas durante
o desenvolvimento com o intuito de familiarizar o leitor com as ferramentas disponiveis no
ecossistema de desenvolvimento em Python e mostrar como as suas utilizagoes contribuiram

para o desenvolvimento do projeto.

e opencv: possivelmente umas das mais conhecidas bibliotecas de tratamento de
imagem. Sua escolha foi devido a extensa documentagao disponivel online, por
ser implementada em C++ e portanto apresentar uma performance aceitavel e
também pelo fato de que esta disponivel para uso tanto em Python quanto em
C++, facilitando assim uma futura portabilidade do pipeline para outras linguagens.
Uma restri¢ao importante a sua utilizagao, porém, é a dificuldade no processo de
instalacao, que muitas vezes envolve a compilacao a partir do cédigo fonte nao sé
da propria biblioteca, como também de diversas dependéncias. Porém, uma vez
devidamente instalada sua utilizacao é facil.

e numpy: como dependéncia do opencv e 6tima ferramenta para operagoes com matrizes,
estruturas de dados multi-dimensionais e computacao numérica, temos a biblioteca
numpy. Seu uso, assim como o da biblioteca anterior é amplamente difundido, com
uma documentagcao extensa e uma comunidade bastante ativa. Também implementada
em C++ e compilada para ser utilizada em Python, essa biblioteca apresenta ganhos
de performance consideraveis quando comparada com uma implementagao puramente
em Python.

e scipy: definida como um conjunto de bibliotecas (dentre elas numpy e pandas) para
o ramo da matemadtica, ciéncia e engenharia, essa biblioteca disponibiliza diversas
ferramentas para tratamento de dados. No contexto desse projeto foi utilizada na
etapa de otimizacao do Bundle Adjustment.

e pandas: utilizada nesse projeto para o tratamento dos dados oriundos da execucao,
pandas é¢ também uma biblioteca bastante difundida e utilizada por conta de sua

performance e flexibilidade.
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e itertools: apesar de nao ser uma biblioteca externa, vale ressaltar o médulo itertoos
por conta do papel que tomou nas etapas de simplificacao e otimizacao do codigo.
Esse médulo permite a escrita de codigo mais legivel e “pythonico” de forma que
construcoes mais complexas de lagos fossem substituidas, o que diminuiu a incidéncia
de certos tipos de erros de programacao e aumentou a velocidade da implementacao
de funcionalidades novas.

e ruamel.yaml: como descrito abaixo, o formato de arquivos YAML apresenta diversas
vantagens em relagao a outros formatos de arquivos, especialmente quando o usudrio
modifica-o manualmente, portanto uma biblioteca adequada é necessaria.

e dacite: juntamente com a utilizacao de ruamel.yaml, essa biblioteca permite a criacao
de dataclasses com bastante simplicidade, realizando ao mesmo tempo a verificacao
do tipo de dados sendo processados contra o tipo esperado.

e seaborn: por fim, mas ainda importante, temos seabon, uma biblioteca de visualizagao
de dados bastante flexivel e simples de ser utilizada, que durante o desenvolvimento
do projeto simplificou consideravelmente a geracao de graficos e tornou a analise

visual de dados mais dinamica.

4.4 Prdticas de desenvolvimento

Por fim, estao descritas aqui algumas das praticas adotadas durante o desenvolvi-

mento do projeto. Essas praticas foram adotadas com os seguintes objetivos:

e Diminuir a ocorréncia de erros de programacao;

e Melhorar a qualidade e organizacao do cédigo;

e Facilitar e acelerar a introducao de novas funcionalidades;
e Facilitar a manutencao do cédigo;

e Facilitar a utilizagao do codigo;

e Melhorar a comunicacao entre membros da equipe;

e Facilitar o desenvolvimento em mais de uma pessoa.
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E as principais praticas adotadas sao:

e Utilizacao de ambiente virtual: permite padronizar o ambiente de desenvolvimento
diminuindo assim problemas que a equipe pode encontrar por conta de versoes
diferentes da linguagem ou dependéncias, por exemplo;

e Controle de versoes: através de ferramentas como git e mercurial, o controle de versoes
permite um melhor controle sobre as modificacoes no cédigo e o desenvolvimento
simultaneo por mais de um integrante da equipe;

e Padronizagao do estilo do cédigo: facilita o desenvolvimento, pois faz com que o
cédigo desenvolvido por cada desenvolvedor seja mais facilmente integrado ao resto
e analisado ou estendido quando necessario. Para auxiliar nessa tarefa a ferramenta
Black foi utilizada, que enforca a utilizagao do estilo PEP 8, o guia de estilo oficial
de Python;

e Utilizacao de boa IDE: fornece grande auxilio no desenvolvimento indicando possiveis
erros, facilitando a refatoracao do cédigo, utilizacao do controle de versionamento
entre outras funcgoes. No caso desse projeto a IDFE escolhida foi PyCharm desenvolvido
pela JetBrains;

e Modularidade e reutilizagao do cédigo: auxilia no desenvolvimento pode diminuir a
complexidade das fungoes a serem implementadas, diminuir a quantidade de cédigo
escrito e auxilia também na fase de testes, pois permite separar o pipeline em partes
menores e bem definidas para serem testadas individualmente;

e Gerenciamento de configuracoes centralizado: importante principalmente na utilizacao
do pipeline, o bom gerenciamento de configuracoes alerta usuarios quando o arquivo
de configuragoes esta formatado incorretamente ou apresenta dados em formatos
nao compativeis. Auxilia também durante o desenvolvimento, pois centraliza as
validacoes das entradas em um tinico ponto e torna desnecesséria a revalidagao dos
dados em outros pontos do cédigo;

e Entregas pequenas, periddicas e bem definidas: talvez uma das praticas que mais
contribuiu para o andamento do projeto, ao separar o trabalho a ser realizado foi
possivel nao s6 acompanhar o desenvolvimento com a granularidade adequada, como

também seguir fielmente o cronograma proposto.
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5 Resultados

Os resultados obtidos com o pipeline proposto serao apresentados a seguir. Os testes
realizados foram divididos em, essencialmente, duas etapas. Em um primeiro momento,
os diferentes algoritmos utilizados durante a reconstrugao incremental foram testados
utilizando-se um conjunto de dados sintéticos. Isto é, foram gerados pontos tridimensionais,
bem como uma trajetoria para a camera, ambos sendo, portanto, conhecidos. Em seguida,
os pontos foram projetados através das diferentes matrizes da camera em cada posicao
da trajetoria. Essas projecoes foram, entao, colocadas como entrada do pipeline e a
reconstrucao obtida foi comparada com os dados originais.

Conforme sera detalhado a seguir, essa validacao foi realizada de duas maneiras. A
primeira delas usando os dados projetados ideias, com o objetivo de validar o pipeline, uma
vez (ue nessa situagao era necessario recuperar exatamente os dados gerados originalmente.
Em seguida, ruido gaussiano branco foi adicionado as projecoes para simular de maneira
mais realista as projecoes ruidosas dos frames de um video. Nesse caso, foi possivel atestar,
em particular, o efeito corretivo do Bundle Adjustment e sua capacidade de fazer a solucao
retornar aos valores esperado.

Uma vez feita a validagao com esses dados sintéticos, a segunda etapa consistiu
na utilizacao de diferentes videos reais. A performance do pipeline em cada uma dessas
situagoes foi analisada, bem como o impacto de algumas variacoes nos parametros dos
diversos algoritmos envolvidos na reconstrucao. Em especial, o impacto da inicializacao
sera evidenciado, mostrando de que forma o processo de refinamento proposto auxilia na

melhoria da performance geral da reconstrucao.

5.1 Validagao do pipeline

Como mencionado anteriormente, antes de aplicar o pipeline a videos reais, a
primeira etapa de testes consistiu em uma validagao dos diferentes algoritmos utilizados
através do uso de projecoes de pontos tridimensionais gerados sinteticamente em posigoes
e orientagoes conhecidas. Mais especificamente, foi gerado um paralelepipedo de dimensoes
4 x 5 x 5 com pontos apenas nas faces externas e 25 posigoes de camera que realizam um

circulo completo em torno desse paralelepipedo, como mostrado na imagem abaixo:
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Figura 5.1 — Paralelepipedo e trajetéria da camera gerados para validagao do pipeline

Como esperado, a versao dos dados sem qualquer fonte de ruido é recuperada de
maneira idéntica pelas versoes do pipeline sem e com a otimizacao do Bundle Adjustment,
como pode ser inspecionado visualmente nas imagens abaixo. Isso permite validar, ao
mesmo tempo, dois aspectos importantes do trabalho: em primeiro lugar, a reconstrucao
basica funciona como deveria, uma vez que na auséncia de ruido ela retorna exatamente
o esperado; além disso, o fato do Bundle Adjustment nao alterar em nada a solucao
nesse cenario, em que o erro de reprojecao é nulo, é um indicativo inicial de seu bom

funcionamento, dado que qualquer otimizacao é desnecessaria.

Figura 5.2 — Comparacao dos resultados do pipeline: sem Bundle Adjustment a esquerda
(a) e com a direita (b). Como esperado, as reconstrugoes obtidas sao idénticas
entre si e com os dados originais.

Por outro lado, assim que algum tipo de ruido é introduzido nas projecoes dos dados
sintéticos, é possivel perceber a deterioracao da reconstrucao quando feita pelo pipeline
de base sem otimizacao e, de maneira analoga, a capacidade de correcao imposta pelo
Bundle Adjustment. De maneira mais precisa, no caso dos dados sintéticos, sao conhecidos
os pontos tridimensionais X;, bem como as matrizes de projegao P;. Assim, para alterar
cada ponto ¢ projetado em uma posigao de camera j dado por u;; = P;X;, ruido branco
gaussiano aditivo (AGWN na sigla em inglés) foi utilizado. Isto é, em cada componente
das projegoes foi adicionado o termo gaussiano de média zero e matriz de covariancia

diagonal e constante 3 = ol:

u™™ = + N(0,01) (39)

J
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No caso dos testes realizados, a variancia do erro utilizada foi de o = 5 pixels. Na
pratica, isso significa que cada pixel projetado estard em sua posicao original com um
desvio de mais ou menos 10 pixels em aproximadamente 95% dos casos, o que representa
um nivel de ruido relativamente elevado. Novamente, os resultados do pipeline com e sem

a aplicacao do Bundle Adjustment sao mostrados na figura a seguir.

w

Figura 5.3 — Comparacao dos resultados do pipeline quando riido é adicionado: sem
Bundle Adjustment a esquerda (a) e com a direita (b). O BA é capaz de
recuperar o resultado original.

E possivel notar que, no caso do pipeline basico, o ruido introduz dificuldades na
recuperacao tanto da estrutura tridimensional, que fica deformada, quanto da trajetéria da
camera, que passa a apresentar oscilagoes inexistentes nos dados originais. Isso é bastante
razoavel, uma vez que os algoritmos da reconstrugao possuem certa sensibilidade ao ruido.
De toda forma, é interessante notar que a estrutura geral dos dados foi recuperada: ainda é
possivel entender que o objeto é um paralelepipedo e que a camera realizou uma trajetéria
circular em torno dele.

Por outro lado, nessa situacao com ruido, o interesse do Bundle Adjustment fica
muito mais evidente. E possivel notar que, ao menos visualmente, a solucao é praticamente
idéntica aos dados originais apresentados na figura (5.1): o paralelepipedo ndo apresenta
mais a distor¢ao observada no caso sem BA e a trajetéria da camera volta a ser um circulo
sem qualquer desvio como antes.

No caso dos dados sintéticos, é possivel analisar cada uma das situacoes descritas
anteriormente de um ponto de vista quantitativo também, ao se calcular o erro entre a
solugao encontrada e os dados originais (o que nao é possivel em geral para videos reais,
uma vez que as posigoes dos pontos e cameras nao sao conhecidos). O gréfico abaixo
apresenta um resumo desses resultados: para cada frame, sao comparados os angulos e as
translagoes estimados com os dados originais, nos graficos de cima, bem como os erros
médios dos pontos tridimensionais estimados e da reprojecao desses pontos, nos graficos

da segunda linha. Devido ao carater estocastico do ruido, cada caso é rodado 200 vezes e
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a parte hachurada do grafico representa o desvio padrao dos erros obtidos.
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Figura 5.4 — Erros, ao longo dos frames, nas posi¢oes dos pontos, na translacao e orientagao
da camera e na reprojecao para os dados com e sem ruido e pipelines com e
sem BA. A otimizacao aproxima a soluc¢ao do resultado original.

Como havia sido inspecionado visualmente, é possivel notar que no caso sem ruido,
os pipelines com e sem BA, representados pelas curvas azul e amarela, respectivamente,
garantem a mesma solucao sem qualquer tipo de erro: em todos os graficos as duas curvas
estao sobrepostas e valem zero. Assim que o ruido gaussiano ¢é introduzido, é possivel notar
um grande crescimento do erro no pipeline sem BA (curva verde), enquanto que a presencga
do BA permite uma reconstru¢ao muito mais préxima da original. Como é possivel notar
no grafico do canto inferior esquerdo, o erro de reprojecao médio fica proximo de 5 pixels
no caso com BA, enquanto oscila em torno de 25 quando ele é desligado, o que representa,
portanto, uma reducao média do erro de cinco vezes.

Em tdltimo lugar, além da validagao da qualidade da reconstrucao, também foi
analisada a velocidade de processamento do pipeline nesse caso mais simples, com o
objetivo de se estimar o quao distante estaria a performance de um processamento em
tempo real. Para o caso mais simples, sem ruido ou qualquer otimizacao final, o pipeline
é capaz de processar 300 frames por segundo em um processador Intel Core i7-8850H

2.6GHz de 6 nucleos. Evidentemente, essa situacao é muito distante de um video real,

25
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porém, de toda forma, o fato do pipeline ser bastante eficiente nessa situacao simples
mostra que existe a possibilidade de sua performance nao ser impeditiva em casos mais

complexos.

5.2 Analise do efeito da otimizacao e inicializacdo

Uma vez validados os constituintes basicos do pipeline, uma segunda etapa de testes
foi realizada para se comparar diferente versoes possiveis, dependendo da escolha de alguns
dos componentes. Mais precisamente, em primeiro lugar foi analisada a influéncia do
momento em que o Bundle Adjustment era aplicado: como mencionado anteriormente, essa
etapa de otimizacao da reconstrugao incremental poderia ser feita apenas quando todos
os frames tivessem sido processados ou ao longo da reconstrucao, através de uma janela
deslizante toda vez que um determinado niimero de frames é processado. Isso porque,
usualmente, a literatura indica o uso da otimizacao apenas no final do pipeline. Porém, dado
as caracteristicas sequenciais de um video, bem como o interesse de eventualmente poder
processa-lo em tempo real, a solugao com a janela deslizante parece ser mais adequada.

Dessa forma, foram utilizados 4 configuracoes diferentes: a primeira, sem qualquer
Bundle Adjustment sendo aplicado; a segunda, com BA apenas no final; a terceira, com
BA sendo aplicado com uma janela deslizante; e a quarta, em que o BA é aplicado tanto
com a janela deslizante, quanto no final do video. Para todos os casos, ruido branco
gaussiano foi adicionado nas projecoes do mesmo modo que descrito na segao anterior e
como=5. B importante notar que, no caso em que a janela deslizante é utilizada, sao
considerados sempre 6 frames anteriores, sendo que a diferenca entre eles é variavel. Isto
é, utiliza-se sempre o frame atual, um frame para tras, 3 frames para tras, 6 frames pra
tras e assim sucessivamente. O objetivo de uma tal estratégia é aumentar a velocidade
de processamento e diminuir um potencial overfitting. Isso porque o BA otimiza o erro
empirico de reprojecao, isto é, a otimizac¢ao depende dos dados observados. Sendo feito
com os dados parciais, existe a possibilidade da solugao convergir para um minimo local
que nao corresponde, portanto, a melhor configuracao possivel.

As figuras abaixo mostram os resultados para cada uma das quatro configuracoes
descritas anteriormente. Visualmente é possivel perceber que todas as versoes com BA

((b), (c) e (d)) performam melhor do que a versao bésica, o que estd de acordo com os



resultados apresentados anteriormente.
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(d)

Figura 5.5 — Diferentes versoes do pipeline: (a) sem BA algum, (b) BA apenas no final,
(c) BA com janela deslizante, (d) BA com janela deslizante e no final.

O efeito do momento em que o BA é aplicado pode ser melhor analisado através dos

graficos de erro que foram introduzidos na secao anterior e que sao reproduzidos abaixo.
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Figura 5.6 — Comparacao das performances com as diferentes configuragoes do BA.
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E possivel notar que, de maneira geral, a presenca do Bundle Adjustment no
final (curvas verde e vermelha) garante os melhores resultados em termos de todas as
métricas de erro, sendo que a versao em que a janela deslizante nao ¢é usada fornece os
melhores resultados (curva verde). Isso pode ser interpretado pelo argumento fornecido
anteriormente: a aplicacao do BA com dados parciais pode resultar na otimizacao para
minimos locais, uma vez que nem todos os dados estao disponiveis. Isso fica ainda mais
evidente quando o BA é realizado apenas com a janela deslizante (curva amarela): mesmo
que o erro de reprojecao médio seja o menor de todos, que é justamente o que é minimizado
pelo algoritmo, as demais métricas de erro sao piores até mesmo do que a versao sem
otimizacao alguma, o que é um forte indicativo de que a solugao encontrada caminhou
para um minimo local com boa coeréncia entre os pontos tridimensionais e as posicoes da
camera, mas que nao correspondia exatamente aos dados originais.

Esse potencial owverfitting causado pela otimizacao com a janela deslizante fica
bastante evidente quando analisadas a figura abaixo, em que o BA foi utilizado logo no
inicio da reconstrucao, quando apenas uma das faces do paralelepipedo havia sido vista

pela camera até entao.

.y

(a) (b)

Figura 5.7 — Resultado da otimizacao ao longo do pipeline para os frames iniciais: visao
frontal & esquerda (a) e superior a direita (b). Os pontos da perspectiva
das cameras estao coerentes, mas a estrutura global do paralelepipedo fica
deformada.
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E possivel perceber que a otimizacao produz pontos coerentes para a face do
paralelepipedo que havia sido vista pela camera até entao, como esté evidenciado na visao
frontal (da perspectiva das cameras) do paralelepipedo mostrado a direita: os pontos dessa
face estao razoavelmente dispostos na forma de uma quadrilatero e os demais pontos em
outros planos garantem uma perspectiva natural do objeto tridimensional. Por outro lado,
a visao superior mostrada na figura a esquerda evidencia que os demais pontos estao
completamente deformados e nao formam a figura esperada. Como o erro minimizado
pelo BA resulta da reprojecao entre pontos e cameras disponiveis, o minimo encontrado
corresponde, visualmente, a uma disposi¢ao dos pontos que faga sentido apenas para a
perspectiva das cameras usadas.

Dada a pequena translacao e rotagao (e o ruido), a informacao observada é muito
parecida em todos os frames e, além disso, apresenta baixa qualidade para os pontos das
demais faces. Como consequéncia, é possivel obter um erro de reprojecao baixo para as
cameras utilizadas e, ao mesmo tempo, uma configuragao global que nao corresponde
exatamente a estrutura tridimensional existente na realidade.

Além da otimizacao, outro constituinte crucial do pipeline proposto é a inicializagao,
uma vez que, quando realizada de maneira inadequada, pode acarretar na impossibilidade de
realizar qualquer reconstrugao que seja minimamente razoavel. Para tanto, foram realizados
alguns testes com diferentes nimeros de frames utilizados para refinar a inicializagdo, como
descrito na segao 3.3.2. Mais precisamente, os graficos apresentados na figura anterior
utilizam 5 frames para o refinamento e outros 5 para a validagao do threshold de erro.
Em seguida, foram realizados testes com o dobro do nimero de frames tanto para o
refinamento, quanto para a validacao, os resultados sendo mostrados nos graficos a seguir.

E possivel notar que, de maneira geral, o nivel de erro foi menor em todas as
configuracoes testadas, o que mostra a utilidade de se realizar uma inicializacao mais
robusta. O ponto negativo, entretanto é o aumento da complexidade de célculo, o que
resulta, necessariamente, em um menor nimero de frames processados por segundos. Dessa
forma, é possivel perceber que existe um compromisso entre a qualidade da reconstrucao e

a velocidade do processamento.
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Figura 5.8 — Comparacao das performances com as diferentes configuracoes do BA, 10
frames utilizados na inicializacao.

Além disso, os testes realizados mostraram que existe uma influéncia da aplicacao do
Bundle Adjustment com a janela deslizante na performance da inicializacao. Basicamente,
a presenca de uma otimizagao ao longo do processo permite que o threshold de erro
considerado durante o refinamento seja atingido mais rapido, como é mostrado no grafico

abaixo, o que faz com que o nimero médio de frames descartados seja muito mais baixo.

frame_number
w
A

Roliing window: ON Rolling window: OFF
case

Figura 5.9 — Comparagao do nimero de frames descartados na inicializacao. O BA com
janela deslizante permite um inicio mais réapido.
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Mais precisamente, enquanto a auséncia do BA implicou em média 3 a 6 frames
descartados, de modo geral sua presenca permitiu a inicializagao diretamente a partir
da primeira tentativa. Como cada inicializacao realiza as contas para k + p frames, com
k = p = 10, isso significa que a sao realizados 22 processamentos no caso com BA e de
60 a 120 processamentos. Na pratica, isso significa que o BA com janela deslizante seria
capaz de aumentar a velocidade de processamento, mesmo utilizando mais frames para o
refinamento da inicializagao e, como o nimero de frames aumenta, o efeito potencial do
overfitting discutido anteriormente pode ser suavizado, mesmo que ele ainda possa estar
presente.

A partir desses testes, foi possivel entao selecionar o que foi considerada a melhor
configuracao do pipeline proposto antes de aplica-lo a videos reais. Essencialmente, levando-
se em conta o efeito da qualidade da reconstrucao obtida, assim como a velocidade
de processamento, a versao que utiliza um maior nimero de frames para a refinar a
inicializacao, associado ao Bundle Adjustment realizado através da janela deslizante foi,
escolhido por fornecer o melhor compromisso entre essas duas métricas de performance.
Como mencionado anteriormente, o maior problema de uma tal estratégia é causar uma
espécie de overfitting e degradar ligeiramente a solugao. Entretanto, a presenca de mais
frames na inicializacao parece tender a compensar esse efeito. Por tltimo, de um ponto de
vista um pouco mais conceitual, essa escolha permite que o pipeline rode teoricamente
em tempo real, uma vez que a realizacao do BA apenas no final do video implica que ele
seja processado por completo apds sua aquisicao. Novamente, mesmo que isso nao seja um
requisito central do projeto, a possibilidade de adaptéd-lo para esse modo de funcionamento

¢ interessante do ponto de vista de trabalhos futuros.
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5.3 Videos reais

5.3.1 Video 1: caixa de macarrao

Uma vez realizados os testes com dados sintéticos, foi possivel aplicar o pipeline
proposto a videos reais. Os primeiros testes foram realizados com objetos geométricos
simples, como por exemplo uma caixa de macarrao, disposto em um ambiente bem
contrastado, o objetivo sendo facilitar a deteccao de boas features com o algoritmo KLT.
Como é possivel observar com a sequéncia de frames a seguir, isso de fato acontece: as
diferentes features seguidas pelo KLT estao marcadas nos diferentes momentos do video
com pontos coloridos e é possivel notar que, de fato, existe uma coeréncia conforme a

sequéncia de imagens avanca.

Figura 5.10 — Sequéncia de frames do video de uma caixa de macarrao e a evolugao das
features acompanhadas pelo KLT.
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E interessante notar que, como esperado, as melhores features encontradas pelo
algoritmo estao nos vértices de letras da caixa, onde ha um forte gradiente entre regioes
brancas e azuis, por exemplo. Em seguida, essas features foram alimentadas no algoritmo
de reconstrucao, o resultado sendo apresentado abaixo. E possivel notar que a solucao
encontrada é bastante coerente com o esperado: a camera realiza uma trajetéria de cima da
caixa contornando-a (como é possivel perceber pela sequéncia de frames acima). Além disso,
os pontos tridimensionais reconstruidos apresentam a mesma estrutura de paralelepipedo

da caixa, estando em diferentes planos perpendiculares entre si.

Figura 5.11 — Resultado da reconstrucao para a sequéncia de video da caixa de macarrao.

Além da inspecao visual do resultado, que é um pouco mais dificil de realizar de
modo confiavel nesse caso, é possivel avaliar quantitativamente sua performance através do
erro de reprojecao, uma vez que basta comparar as posicoes dos pixels nos frames originais
com os estimados através dos pontos tridimensionais e matrizes de projecao encontradas.
O resultado é apresentado no grafico abaixo.

Como ¢ possivel observar, o erro médio obtido permanece abaixo de 0.6 pixel em
todos os frames. De maneira natural, também é possivel observar que esse erro tem uma
tendéncia de aumento ao longo do tempo. Isso pode ser explicado por um acimulo de erro
durante a reconstrucao, que é inerente ao método sequencial em que ela é feita.

Um segundo teste foi realizado utilizando a mesma caixa de macarrao. No video
mostrado acima, a aquisicao foi realizada de maneira suave e continua, isto é, a camera
realizou um movimento contornando lentamente a caixa de cima, sem qualquer movimento
brusco ou outro tipo de ruido na aquisicao. Para testar a robustez do pipeline uma

segunda aquisicao foi feita, dessa vez muito mais complexa: a caixa foi filmada por mais
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Figura 5.12 — Erro de reprojecao obtido com a sequéncia de video da caixa de macarrao

tempo, com a camera realizando um movimento aproximadamente circular (iniciando e
terminando aproximadamente no mesmo ponto) e repleto de pausas e interrupgoes ao
longo da trajetoria.

O objetivo principal sendo, portanto, a introducao de diferentes tipos de ruidos
na aquisicao que, em tese, deveriam dificultar a reconstrugao. O resultado obtido é
mostrado abaixo: em primeiro lugar, é possivel notar que a trajetéria mais complexa
de fato é recuperada pelo pipeline e a camera de fato inicia e termina o seu movimento
aproximadamente no mesmo ponto; além disso, os pontos tridimensionais obtidos também

apresentam a mesma, coeréncia de antes, estando nos diferentes planos como esperado.

Figura 5.13 — Resultado da reconstrucao da caixa de macarrao no caso de uma aquisi¢ao
ruidosa.
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E interessante notar que, olhando o erro médio de reprojecao, como esperado, ha
um aumento em relacao a versao anterior: esse erro chega a superar o nivel de 2.5 pixels,
ou seja, praticamente 5 vezes maior do que o video mais simples. De toda forma, tanto do

ponto de vista qualitativo quanto quantitativo o resultado obtido continua aceitavel.
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Figura 5.14 — Erro de reprojecao no caso de uma aquisi¢ao ruidosa: ha um aumento
significativo em relagao a versao mais simples do video.

5.3.2 Video 2: estatua de um elefante

Ainda mantendo-se em videos de objetos bem contrastados em relacao ao fundo, o
segundo tipo de teste realizado foi utilizando objetos mais complexos. Da mesma forma
que uma aquisicao mais complexa, o objetivo desse teste era de introduzir dificuldades
na reconstrucao. Nesse caso, essa dificuldade é ainda mais representativa, uma vez que
a complexidade do objeto poderia potencialmente deteriorar a qualidade dos pontos
selecionados pelo algoritmo KLT e, como toda a reconstrucao se baseia na correspondéncia
entre esses pontos ao longo dos frames, o impacto poderia ser visto ao longo de todo
pipeline.

Para realizar esse teste, foi utilizada uma estatua de um elefante. Como evidenciado
na sequéncia de frames abaixo, ela foi filmada de maneira andloga ao video da caixa
de macarrao: a camera realiza um movimento suave acima do objeto, contornando-o
parcialmente. Além disso, a estatua em si apresenta uma estrutura muito mais complexa
que a caixa de macarrao, uma vez que existem diferentes detalhes e uma regiao com muitas

texturas e partes vazadas, com certo potencial de dificultar o detector de features do KLT.
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Figura 5.15 — Sequéncia de frames do video da estatua de um elefante: as features detec-
tadas se concentram, sobretudo, na regiao com bastante textura.

Naturalmente, a regiao vazada e com textura recebeu quase que a totalidade das
features detectadas pelo KLT. No entanto, um ponto positivo foi que elas se mantiveram
coerentes ao longo do video, sem que houvesse qualquer tipo de salto ou outra variagao
abrupta de um frame para outro, o que poderia acontecer em tal tipo de estrutura.

Realizando a reconstrucao em seguida e inspecionando-a visualmente, é possivel
concluir que o pipeline foi capaz de produzir um resultado coerente do ponto de vista
qualitativo, como é mostrado na figura abaixo com a saida da reconstrucao. Isso porque a
trajetéria da camera é claramente recuperada, com as diversas posi¢oes acima do objeto,
contornando-o ao longo do video. Além disso, a estrutura 3D parece bastante razoavel:
como os pontos detectados sao todos pertencentes a regiao vazada do elefante, é possivel
reconhecer o formato arredondado dessa regiao, bem como a certa simetria presente tanto

nos pontos detectados, quanto na prépria estrutura real do elefante.
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Figura 5.16 — Resultado da reconstrucao do pipeline para a estdtua de um elefante.

De um ponto de vista quantitativo, é possivel analisar o erro de reprojecao mais
uma vez. Como esperado, dada a maior complexidade desse caso, o erro observado é
muito maior do que anteriormente, chegando a 14 pixels nos frames iniciais. Entretanto, a
aplicacao do Bundle Adjustment ao longo do video permite que esse erro decresca e volte
para niveis aceitaveis do meio para o fim do video. De toda forma, é possivel concluir que a

performance foi ligeiramente afetada pelo aumento da complexidade do objeto observado.
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Figura 5.17 — Erro de reprojecao do video da estatua de um elefante.
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5.4 Limitacoes

Em seguida, depois de realizados os testes em cenas internas, uma segunda categoria
de videos foi testada. Nesse caso, foram escolhidas cenas mais amplas e em ambientes
externos e, portanto, com muitos detalhes o que do que nos exemplos anteriores. Como ja
mencionado, a estrutura desse tipo de cena introduz uma dificuldade natural ao pipeline
proposto: o fluxo 6ptico estimado é esparso, isto €, apenas alguns vértices da cena sao
seguidos, de modo que uma cena com muitos detalhes potencialmente sera composta de
pontos espalhados de maneira nao uniforme por todos os objetos presentes, sem que apenas
um unico objeto seja completamente caracterizado.

Além disso, cenas externas introduzem outros tipos de dificuldade que, muitas
vezes, nao se adéquam as hipdteses de funcionamento dos algoritmos de reconstrugao.
A mais sensivel dessas hipoteses é a necessidade da cena ser estatica: isso é claramente
obtido nos videos anteriores, em que os objetos detectados nao se moviam; entretanto,
no caso de uma cena com vegetacao por exemplo, o efeito do movimento das folhas pelo
vento pode acabar deslocando erroneamente as features detectadas. Outros exemplos de
deslocamentos indesejados sao introduzidos pela presenca de sombras ou reflexos que, caso
detectados pelo algoritmo KLT, introduzem um grande nivel de ruido nos algoritmos de
reconstrucao.

Diferentes testes foram realizados nessa situagao. Por exemplo, a area externa de
uma casa foi filmada em um dia ensolarado e todos os elementos dificultadores estavam
presentes no video: sombras que se moviam com a camera, uma grande quantidade de
vegetacao oscilando com o vento e janelas com reflexos de outros objetos da cena. Como
esperado, nao foi possivel estabelecer uma correspondéncia robusta entre as features nos
diferentes frames e, consequentemente, a reconstrucao se tornou inviavel, dado que todos
os algoritmos subsequentes no pipeline sao dependentes de que os vértices acompanhados
sejam os mesmos conforme os video avanga. Um segundo teste foi realizado com estatuas
e outros elementos, também em uma area externa e, novamente, os mesmos problemas

foram observados.



69

Em todos esses testes, portanto, o pipeline foi incapaz de realizar a reconstrucao
da cena. Visualmente, os resultados obtidos mostravam nuvens de pontos e trajetorias de
camera incoerentes com os videos de entrada e, quantitativamente, o erro de reprojecao
observado permaneceu oscilando na ordem de centenas a milhares de pixels. Uma possivel
solucao a ser investigada seria alguma estratégia para aumentar a robustez das features,
utilizando os métodos descritos anteriormente, como SIFT, aplicados com um espagamento
entre frames para permitir maiores variagoes fotométricas. No entanto, os potenciais
movimentos das cenas externas ainda nao seriam completamente tratados e, além disso, a
performance em velocidade do pipeline seria potencialmente reduzida, dada a complexidade

desses algoritmos.
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6 Conclusao

Diante dos resultados expostos nas secoes anteriores, foi possivel, portanto, estabe-
lecer um pipeline de Structure from Motion capaz de reconstruir a estrutura tridimensional
de uma cena estatica, bem como a trajetéria da camera realizada na aquisicao da cena,
a partir de uma sequéncia de frames que compoem um video. Em primeiro lugar, é
importante ressaltar que o seu funcionamento foi validado utilizando-se um conjunto de
dados sintéticos, em que a estrutura 3D era completamente conhecida, bem como a posi¢ao
e orientagao da camera em cada um dos frames gerados, de modo que o resultado esperado
da reconstrucgao era conhecido.

Como mostrado anteriormente, o pipeline nao so foi capaz de reconstruir a cena
ideal, isto é, livre de qualquer ruido, mas principalmente que as etapas de otimizacao
adicionadas para corrigir as principais fontes de erro foram bastante efetivas: a versao
com BA é capaz de recuperar a resposta esperada mesmo com a presenca de forte ruido
gaussiano nas projecoes, o que nao € o caso do pipeline em sua versao basica sem essa
etapa final. Essa etapa foi fundamental para validar as diferentes etapas da reconstrucao e
garantir que os diferentes algoritmos implementados, bem como as diferentes conversoes
de sistema de coordenadas e a biblioteca de visualizacao, estavam corretos e nao eram os
responsaveis por eventuais erros que seriam observados em videos reais.

Uma vez validada a implementacao, foi possivel entao passar para o tratamento de
videos reais. Como mostrado, a qualidade da reconstrucao mostrou-se bastante dependente
do tipo de video considerado. Quando a aquisicao é feita de forma suave e continua e a
cena é constituida de poucos objetos com formas geométricas relativamente simples e bem
definidas, o pipeline apresenta uma boa performance. Isso pode ser explicado pelo fato do
video, nessas condigoes, estar mais proximo das condigoes ideias dos dados sintéticos. E
importante destacar que, mesmo com uma inicializacao complexa e computacionalmente
exigente, além de estar escrito em uma linguagem naturalmente mais lenta, a velocidade
de processamento obtida é em torno de 26 frames por segundo. Isso mostra que uma
eventual adaptacao para uma versao capaz de processar o video em tempo real nao esté
tao distante, uma vez que, como mencionado anteriormente, ele foi concebido para ser
teoricamente capaz de funcionar dessa forma. Assim, uma possibilidade de trabalho futuro

seria a traducao do cédigo para uma linguagem mais rapida, como C+-+, bem como o



71

profiling para se entender os gargalos de performance e a paralelizacao de algumas etapas
que teriam grande potencial de elevar a velocidade do processamento.

Entretanto, é visivel a degradacao dos resultados nos casos em que os videos sao
adquiridos de forma menos fluida (com interrupgoes e retomadas, elevado tremor ou outros
tipos de ruidos) ou em que a cena filmada é muita ampla e constituida de muitos detalhes.
Esse ultimo problema é inerente ao tipo de reconstrucao feita: o algoritmo KLT seleciona
uma quantidade limitada de pontos para acompanhar, resultando em um fluxo éptico
esparso. Assim, em uma cena com diferentes detalhes, o nimero de pontos acompanhados
nao é suficiente para uma boa distingao da estrutura da cena, de modo que a utilizacao de
um fluxo 6ptico denso (como uma mapa de profundidade) se mostra mais adequada.

O problema de robustez a videos mais ruidosos, entretanto, ¢ mais complexo e
é possivel identificar diferentes caminhos que potencialmente poderiam resolvé-lo. Em
primeiro lugar, como observado durante o desenvolvimento, a inicializacao das matrizes de
projecao e, sobretudo, da nuvem de pontos 3D apresenta um grande impacto no resultado
final, a ponto de uma inicializagao ruim inviabilizar completamente a reconstrucao, mesmo
com o uso do Bundle Adjustment. Dessa forma, métodos mais complexos do que o
implementado e presentes em trabalhos mais recentes poderiam ser implementados com
um grande potencial de impactarem positivamente no resultado. Além disso, um estudo
mais aprofundado dos diversos parametros presentes no pipeline poderia ser realizado,
para se estabelecer diferentes configuragoes adaptadas a diferentes tipos de videos, por
exemplo.

Finalmente, uma outra possibilidade seria a mudanca de abordagem. Ao invés de
se basear apenas em informagoes visuais, como € o caso do problema de SfM, seria possivel
utilizar outras informacgoes vindas de sensores como acelerometros e giroscopios. Nesse caso,
seria possivel estimar a dinamica completa da camera, em uma abordagem conhecida como
Monocular SLAM. Trabalhos mais recentes, inclusive, utilizam modelos probabilisticos
para estimar a evolucao da camera ao longo do tempo, sendo capazes de captar e tratar as
incertezas inerentes ao problema de maneira mais eficiente e robusta. Dessa forma, passar
para abordagens desse tipo possui potencial de um grande salto de performance, com a

desvantagem de consistir em modelos mais complexos de serem implementados.
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